簡易檢索 / 詳目顯示

研究生: 劉書詠
Liu, Shu-Yung
論文名稱: 預處理非線性共軛梯度法求解保面積參數化
Preconditioned Nonlinear Conjugate Gradient Method for Area-Preserving Parameterizations
指導教授: 樂美亨
Yueh, Mei-Heng
口試委員: 樂美亨
Yueh, Mei-Heng
黃聰明
Huang, Tsung-Ming
郭岳承
Kuo, Yueh-Cheng
口試日期: 2023/07/19
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 37
中文關鍵詞: 計算幾何非線性優化保面積參數化
英文關鍵詞: Computational geometry, Nonlinear Optimization, Area-Preserving Parameterizations
研究方法: 比較研究
DOI URL: http://doi.org/10.6345/NTNU202301247
論文種類: 學術論文
相關次數: 點閱:85下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們將重點聚焦在透過拉伸能量的最小化來計算出圓盤形狀的保面積參數化。我們使用了非線性共軛梯度法對其進行優化。在不犧牲收斂性理論的情況下,我們進一步地運用適當的預處理增進效果,數值結果顯示,我們方法比最先進的算法,有更好的準確度和效率。
    此外,透過將我們提出的方法結合至二次懲罰法,我們延伸保面積參數化的應用至曲面配準上。數值上,我們能在足夠對齊特徵點的狀況下仍保持良好的保面積效果。

    This thesis focuses on the computation of disk-shaped area-preserving parameterizations through stretch energy minimization. We employ the nonlinear conjugate gradient method to achieve this goal, and we introduce appropriate preconditioning in the algorithm to enhance its effectiveness without sacrificing theoretical convergence. The numerical results indicate that our proposed method outperforms state-of-the-art algorithms.
    Furthermore, we extend the application of area-preserving parameterization to surface registration using the quadratic penalty method.We solve the subproblems in this context using our proposed method. The numerical results demonstrate the capability of our method to align landmark pairs while preserving the area of the surface.

    1 Introduction 1 2 Stretch Energy Minimization(SEM) 1 2.1 Simplicial Surfaces 2 2.2 Simplicial Mappings 3 2.3 Stretch Energy and Minimization 3 2.4 The SEM Method 4 3 Nonlinear Conjugate Gradient (CG) Method in SEM 5 4 Preconditioned Nonlinear CG Method in SEM 8 4.1 Preconditioning and Algorithm 9 4.2 Global Convergence 11 5 Numerical Experiments 20 5.1 Performance of Different Methods 20 5.2 Preconditioning Options and Effects 24 5.3 Examining Properties of the CG Method 28 6 Application: Surface Registration 30 6.1 Quadratic Penalty Method for Surface Registration 31 6.2 Properties of Quadratic Penalty Method 32 6.3 Numerical Results 33 7 Conclusion 34

    [1] G. P.T.Choi and C.H.Rycroft.Density-equalizing maps for simply connected opensurfaces. SIAM J.Imag.Sci., 11(2):1134–1178,2018.
    [2] A. Dominitz and A.Tannenbaum.Texture mapping via optimal mass transport. IEEE Trans.Vis.Comput.Graphics, 16(3):419–433,2010.
    [3] R. Fletcher and C.M.Reeves.Function minimization by conjugate gradients. The ComputerJournal, 7(2):149–154,1964.
    [4] M. S.Floater and K.Hormann.Surface parameterization:a tutorial and survey. In Advances in Multiresolution for Geometric Modelling, pages 157–186. SpringerBerlinHeidelberg,2005.
    [5] K. Hormann, B.L´evy, and A.Sheffer.Mesh parameterization:Theory and practice. In ACM SIGGRAPH Course Notes, 2007.
    [6] K. C.Lam and L.M.Lui.Landmark-and intensity-based registration with large deformations via quasi-conformal maps. SIAM J.Imag.Sci., 7(4):2364–2392, 2014.
    [7] W.-W. Lin, C.Juang, M.-H.Yueh, T.-M.Huang, T.Li,S.Wang, and S.-T. Yau.3D brain tumor segmentation using a two-stage optimal mass transport algorithm. Sci. Rep., 11:14686,2021.
    [8] W.-W. Lin, J.-W.Lin, T.-M.Huang, T.Li,M.-H.Yueh, and S.-T.Yau. A novel 2-phase residual U-net algorithm combined with optimal mass transportation for 3D brain tumor detection and segmentation. Sci. Rep., 12:6452, 2022.
    [9] L. M.Lui, K.C.Lam, S.-T.Yau, and X.Gu.Teichmuller mapping (t-map) and its applications to landmark matching registration. SIAM J.Imag. Sci., 7(1):391–426,2014.
    [10] J. Nocedal and S.J.Wright. Numerical Optimization. Springer,NewYork,NY, NewYork,NY,USA,2eedition,2006.
    [11] P.V.Sander, J.Snyder, S.J.Gortler, and H.Hoppe. Texture mapping progressive meshes. In Proceedings of the 28th Annual Conferenceon Computer Graphics and Interactive Techniques, SIGGRAPH’01, pages409–416, New York,NY,USA,2001.ACM.
    [12] A. Sheffer, E.Praun, and K.Rose.Mesh parameterization methods and their applications. Found.Trends.Comp.GraphicsandVision., 2(2):105–171, 2006.
    [13] K. Su, L.Cui, K.Qian, N.Lei, J.Zhang, M.Zhang, and X.D.Gu.Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation. Comput. AidedGeom.D., 46:76–91,2016.
    [14] Y. Yoshiyasu, W.-C.Ma, E.Yoshida, and F.Kanehiro. As-conformal-as-possible surface registration. In Comput. Graph. Forum, volume33, pages257–267. Wiley Online Library,2014.
    [15] S. Yoshizawa, A.Belyaev, and H.P.Seidel. A fast and simple stretch-minimizing mesh parameterization. In Proceedings Shape Modeling Applications, 2004., pages200–208,June2004.
    [16] M.-H. Yueh. Theoretical foundation of the stretch energy minimization for area-preserving mappings. arXiv:2205.14414,2022.(revision under review by SIAM J.Imaging Sci.).
    [17] M.-H. Yueh, T.Li, W.-W.Lin, and S.-T.Yau. A novel algorithm for volume-preserving parameterizations of 3-manifolds. SIAM J.Imag.Sci., 12(2):1071–1098, 2019.
    [18] M.-H. Yueh, T.Li, W.-W.Lin, and S.-T.Yau. A new efficient algorithm for volume-preserving parameterizations of genus-one 3-manifolds. SIAM J. Imag.Sci., 13(3):1536–1564,2020.
    [19] M.-H. Yueh, W.-W.Lin, C.-T.Wu, and S.-T.Yau. An efficient energy minimization for conformal parameterizations. J. Sci.Comput., 73(1):203–227, 2017.
    [20] M.-H. Yueh, W.-W.Lin, C.-T.Wu, and S.-T.Yau. A novel stretch energy minimization algorithm for equiareal parameterizations. J. Sci.Comput., 78(3):1353–1386, 2019.
    [21] X. Zhao, Z.Su, X.D.Gu, A.Kaufman, J.Sun, J.Gao, and F.Luo. Area-preservation mapping using optimal mass transport. IEEE Trans.Vis. Comput. Gr., 19(12):2838–2847,2013.
    [22] G. Zou, J.Hu, X.Gu, and J.Hua. Authalic parameterization of general surfaces using Lie advection. IEEE Trans.Vis.Comput.Graph., 17(12):2005–2014, 2011.

    下載圖示
    QR CODE