研究生: |
許為明 Hsu, Wei-Ming |
---|---|
論文名稱: |
二階錐特徵值互補問題與二階錐二次特徵值互補問題的解 The Solvabilities of SOCEiCP and SOCQEiCP |
指導教授: |
陳界山
Chen, Jein-Shan |
口試委員: |
杜威仕
Du, Wei-Shih 柯春旭 Ko, Chun-Hsu 張毓麟 Chang, Yu-Lin 朱亮儒 Chu, Liang-Ju 陳界山 Chen, Jein-Shan |
口試日期: | 2021/06/22 |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 解 、特徵值 、二階錐 |
英文關鍵詞: | solvability, eigenvalue, second-order cone |
研究方法: | 數學推理分析 |
DOI URL: | http://doi.org/10.6345/NTNU202101671 |
論文種類: | 學術論文 |
相關次數: | 點閱:130 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,我們研究兩類與二階錐有關的最優化問題,包含二階錐特徵值互補問題及二階錐二次特徵值互補問題。此外,我們將這些問題換成其他架構,並在這些架構上尋找相關的演算法去解決問題。
In this thesis, we study the solvabilities of two optimization problems associated with second-order cone, including eigenvalue complementarity problem associated with second order cone (SOCEiCP), and quadratic eigenvalue complementarity problem associated with second order cone (SOCQEiCP). Furthermore, we reformulate these problems and provide some algorithms for solving them.
[1] S. Adly, H. Rammal, A new method for solving second-order cone eigenvalue complementarity problems, Journal of Optimization Theory and Applications, vol. 165, issue 1, pp. 563–585, 2015.
[2] D.P. Bertsekas, Nonlinear programming, 2nd edition, Athena Scientific, Belmont,
1999.
[3] J.F. Bonnans,H. Ram´ırez, Perturbation analysis of second-order cone programming problems, Mathematical Programming, vol. 104, issue 2-3, pp. 205-227, 2005.
[4] C. Br´as, M. Fukushima, A. Iusem, J. J´udice, On the quadratic eigenvalue complementarity problem over a general convex cone, Applied Mathematics and Computation, vol. 271, pp. 391–403, 2015.
[5] C. Br´as, A. Iusem, J. J´udice, On the quadratic eigenvalue complementarity problem, Journal of Global Optimization, vol. 66, issue 2, pp. 153–171, 2016.
[6] J.-S. Chen, S.-H. Pan, Semismooth Newton Methods for the Cone spectrum of
Linear Transformations Relative to Lorentz Cones, Linear and Nonlinear Analysis,
vol. 1, no. 1, pp. 13-36, 2015.
[7] J.-S. Chen, S.-H. Pan, A survey on SOC complementarity functions and solution
methods for SOCPs and SOCCPs, Pacific Journal of Optimization, vol. 8, no. 1, pp.
33-74, 2012.
[8] J.-S. Chen, S.-H. Pan, A one-parametric class of merit functions for the secondorder cone complementarity problem, Computational Optimization and Applications, vol. 45, no. 3, pp. 581-606, 2010.
[9] J.-S. Chen, S.-H. Pan, A descent method for solving reformulation of the secondorder cone complementarity problem, Journal of Computational and Applied Mathematics, vol. 213, no. 2, pp. 547-558, 2008.
[10] J.-S. Chen, Conditions for error bounds and bounded level sets of some merit functions for SOCCP, Journal of Optimization Theory and Applications, vol. 135, no. 3, pp. 459-473, 2007.
[11] J.-S. Chen, Two classes of merit functions for the second-order cone complementarity problem, Mathematical Methods of Operations Research, vol. 64, no. 3, pp. 495-519, 2006.
[12] J.-S. Chen, A new merit function and its related properties for the second-order
cone complementarity problem, Pacific Journal of Optimization, vol. 2, no. 1, pp.
167-179, 2006.
[13] J.-S. Chen, Alternative proofs for some results of vector-valued functions associated with second-order cones, Journal of Nonlinear and Convex Analysis, vol. 6, no. 2, pp. 297-325, 2005.
[14] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
Reprinted by SIAM, Philadelphia, 1990.
[15] J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of
second-order cone complementarity problem, Mathematical Programming, vol. 104, no. 2-3, pp. 293-327, 2005.
[16] J.-S. Chen, X. Chen ,P. Tseng, Analysis of nonsmooth vector-valued functions
associated with second order cones, Mathematical Programming, vol. 101, issue 1, pp. 95-117, 2004.
[17] X.D. Chen,D. Sun, J. Sun, Complementarity functions and numerical experiments for second-order cone complementarity problems, Computational Optimization and Applications, Volume 25, issue 1-3, pp. 39–56, 2003.
[18] L. Fernandes, M. Fukushima, J. J´udice, H. Sherali, The second-order cone
eigenvalue complementarity problem, Optimization Methods and Software, vol. 31, issue 1, pp. 24–52, 2016.
[19] R. Fletcher, Practical methods of optimization, Optimization, 2nd edition, Wiley-Interscience, Chichester, 1987.
[20] J. Faraut, A. Kor´anyi, Analysis on Symmetric Cones, Oxford Mathematical
Monographs (New York: Oxford University Press), 1994.
[21] F. Facchinei, C. Kanzow, A nonsmooth inexact Newton method for the solution
of large-scale nonlinear complementarity problems, Mathematic Programmming, vol. 76, pp. 493-512, 1997.
[22] M. Fukushima,Z.-Q. Luo, P. Tseng, Smoothing functions for second-order
cone complementarity problems, SIAM Journal on Optimization, vol.12, issue 2, pp.
436–460, 2001.
[23] F. Facchinei and J. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.
[24] M.S. Gowda, R. Sznajder, J. Tao, P-properties for linear transformations on
Euclidean Jordan algebras, Linear Algebra and its Applications, vol. 393, pp. 203–232, 2004
[25] Roger A. Horn, Charles R. Johnson, Matrix Analysis, Cambridge University
Press, 2nd edition, 1994.
[26] S. Hayashi, N. Yamashita, M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems, SIAM Journal on Optimization, vol. 15, issue 2, pp. 593-615, 2005.
[27] S. Hayashi, N. Yamashita, M. Fukushima, ARobust Nash equilibria and
second-order cone complementarity problems, Journal of Nonlinear and Convex Analysis, vol. 6, pp. 283-296, 2005.
[28] H. Kato, M. Fukushima, An SQP-type algorithm for nonlinear second-order
cone programs, Optimization Letters, vol. 1, issue 2, pp 129-144, 2007.
[29] C. Kanzow, I. Ferenczi, M. Fukushima, On the local convergence of semismooth
Newton methods for linear and nonlinear second-order cone programs without
strict complementarity, SIAM Journal on Optimization, vol. 20, issue 1, pp. 297–320,
2009.
[30] Y. Kanno, A.C. Martins, A. pinto da Costa, Three-dimensional quasistatic
frictional contact by using second-order cone linear complementarity problem, International Journal for Numerical Methods in Engineering, vol. 65, 62-83, 2006.
[31] L. Kong, L. Tunel, N. Xiu, Fischer–Burmeister complementarity function on
Euclidean Jordan algebras, Pacific Journal of Optimization, vol. 6, no. 2, pp. 423-440, 2007.
[32] M. Mifflin, Semismooth and semiconvex functions in constrained optimization,
SIAM Journal on Control and Optimization, vol. 15, issue 6, pp. 957–972, 1977.
[33] X.-H. Miao, Shengjuan Guo, Nuo Qi, J.-S. Chen, Constructions of complementarity functions and merit functions for circular cone complementarity problem, Computational Optimization and Applications, vol. 63, pp. 495–522, 2016.
[34] X.-H. Miao, Y.-C. Lin, J.-S. Chen, An alternative approach for a distance inequality associated with the second-order cone and the circular cone, Journal of Inequalities and Applications, vol. 2016, Article ID 291, 10 pages, 2016.
[35] X.-H. Miao, Y. Lu, J.-S. Chen, From symmetric cone optimization to nonsymmetric cone optimization: Spectral decomposition, nonsmooth analysis, and projections onto nonsymmetric cones, Pacific Journal of Optimization, vol. 14, no. 3, pp. 399-419, 2018.
[36] X.-H. Miao, N. Qi, J.-S. Chen, Projection formula and one type of spectral
factorization associated with p-order cone, Journal of Nonlinear and Convex Analysis, vol. 18, no. 9, pp. 1699–1705, 2017.
[37] B. Noble, J.W. Daniel, Applied Linear Algebra, Prentice-Hall, 3rd Edition,1998.
[38] S.-H. Pan, S. Kum, Y. Lim, J.-S. Chen, On the generalized Fischer-Burmeister
merit function for the second-order cone complementarity problem, Mathematics of Computation, vol. 83, no. 287, pp.1143-1171, 2014.
[39] S.-H. Pan, J.-S. Chen, A least-square semismooth Newton method for the second-order cone complementarity problem, Optimization Methods and Software, vol. 26, no. 1, pp. 1-22, 2011.
[40] S.-H. Pan, J.-S. Chen, A semismooth Newton method for SOCCPs based on a
one-parametric class of complementarity functions, Computational Optimization and Applications, vol. 45, no. 1, pp. 59-88, 2010.
[41] S.-H. Pan, J.-S. Chen, A linearly convergent derivative-free descent method for
the second-order cone complementarity problem, Optimization, vol. 59, no. 8, pp.
1173-1197, 2010.
[42] S.-H. Pan, J.-S. Chen, A damped Gauss-Newton method for the second-order cone complementarity problem, Applied Mathematics and Optimization, vol. 59, no. 3, pp. 293-318, 2009.
[43] S.-H. Pan, J.-S. Chen, A regularization method for the second-order cone complementarity problems with the Cartesian P0-property, Nonlinear Analysis: Theory, Methods and Applications, vol. 70, no. 4, pp. 1475-1491, 2009.
[44] A. Pinto da Costa, A. Seeger, Cone-constrained eigenvalue problems: theory
and algorithms, Computational Optimization and Applications, vol.45, issue 1, pp.
25-47, 2010.
[45] J.-S. Pang, Newton's method for B-differentiable equations, Mathematics of Operations Research, vol.15, no. 2, pp. 311-341, 1990.
[46] M. Queiroz, J. J´udice, C. Humes, The symmetric eigenvalue complementarity
problem, Mathmatics of Computation, vol. 73, no.248 , pp. 1849-1863, 2003.
[47] L. Qi, J. Sun, A nonsmooth version of Newton's method, Mathematical Programming, vol. 58, issue 1-3, pp. 353–367.
[48] A. Seeger, Quadratic eigenvalue problems under conic constraints, SIAM Journal on Matrix Analysis and Applications, vol. 32, no.3, pp. 700-721, 2011.
[49] A. Seeger, Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions, Linear Algebra and its Applications, vol. 292, pp. 1-14, 1999.
[50] A. Seeger, M. Torki, On eigenvalues induced by a cone constraint, Linear
Algebra and its Applications,vol. 372, pp. 181–206, 2003
[51] D. Sun, J. Sun, Strong semismoothness of the Fischer–Burmeister SDC and SOC
complementarity functions, Mathematical Programming, vol. 103, issue 3, pp. 575-
581, 2005.
[52] J. Tao, M. Gowda, Some P-Properties for Nonlinear Transformations on Euclidean Jordan Algebras, Mathematical Methods of Operations Research, vol. 30, no. 4, pp. 985-1004, 2005.
[53] J. Wu, J.-S. Chen, A proximal point algorithm for the monotone second-order
cone complementarity problem, Computational Optimization and Applications, vol. 51, no. 3, pp. 1037-1063, 2012.
[54] H. Yamashita, H. Yabe, A primal-dual interior point method for nonlinear optimization over second order cones, Optimization Methods and Software, vol 24, issue 3, pp. 407–426, 2009.
[55] Jinchuan, Zhou J.-S., Chen, Properties of circular cone and spectral factorization associated with circular cone, Journal of Nonlinear and Convex Analysis, vol 14, no. 4, pp. 807–816, 2013.