研究生: |
張志康 Chang, Chih-Kang |
---|---|
論文名稱: |
從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響 |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
博士 Doctor |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 315 |
中文關鍵詞: | 概念改變 、模型 、心智模式 、建模能力 |
英文關鍵詞: | conceptual change, model, mental model, modeling ability |
論文種類: | 學術論文 |
相關次數: | 點閱:339 下載:135 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以Vosniadou、Chi與diSessa (簡稱VCD) 的綜合理論建立「新-心智模式架構」,嘗試整合三位學者的觀點,從多元面向探討「影響概念改變的因素」及「心智模式的類型與演變」。研究目的主要是以VCD綜合理論探討學生概念運作的機制及其心智模式的一致性,並從分析結果中針對VCD的爭議,提出另一個思考的面向。此外,為了刺激學生們對力學概念的活化,研究者採用近十多年來科教界極力提倡的建模教學,分析不同建模教學對學生力學概念與建模能力之影響。在研究工具方面,本研究使用Ioannides & Vosniadou (2001)的「力學概念晤談測驗」,配合建模能力分析指標(邱美虹,2008;張志康與邱美虹,2009)所設計的「力學建模教學」與「力學建模能力測驗」,探究前述之研究目的。
本研究共分四個階段進行:第一階段,研究者分析學齡前、國小、國中與高中學生的力學心智模式架構,在各分層架構內的運作情況與連繫關係。研究結果顯示,(一)跨年級學生心智模式的來源源自「特定領域(Domain-specific)」的人數比例有隨年級的增加而逐漸增長的趨勢。(二)持有迷思預設的人數比例,有隨年級的增加而逐漸減少的趨勢。(三)概念使用的情況,有隨年級的增加而逐漸傾向過程屬性的趨勢。(四)心智模式的類別,有隨年級的增加而逐漸傾向科學模式的趨勢。(五)以全體學生來看,各分層架構間的連繫關係,其Φ相關值達顯著。
第二階段,研究者分析學生力學心智模式的穩定一致性。研究結果顯示,48名學生在未接受力學相關教學前後,其力學心智模式的穩定一致性為83%;此外,48名學生在力學概念晤談測驗各類試題中所使用的力學概念類別一致性為85%。因此,學生的心智模式具有一定程度的一致性,與Vosniadou的觀點相符。
第三階段,研究者分析學齡前、國小、國中與高中學生在經過電腦建模、類比建模與思考建模教學前後,其力學概念改變與建模能力提升的情形。研究結果顯示,(一)三種建模教學對於學生力學概念改變與建模能力的提升,都有顯著的效果(t力學概念=6.424, p力學概念<.01; t建模能力=11.795, p建模能力<.01)。(二)在力學概念改變方面,三種建模教學的效果無顯著差異,而跨年級學生的表現有顯著差異(p<.05),年級越高的學生,其後測表現越佳。(三)在建模能力提昇方面,以思考建模教學最差,而電腦與類比建模教學的效果與思考建模教學間達顯著差異(p<.05);而在跨年級學生的表現上,國中與高中學生其後測表現顯著優於國小與學齡前學生。因此,建模教學可促進學生的力學概念獲得更多的過程屬性,亦可提升學生的建模能力;唯不同年級與不同教學法間,仍有差異存在。
第四階段,研究者分析不同建模教學對跨年級學生力學概念與建模能力的影響。研究結果顯示,(一)電腦建模教學對於國小與國中學生力學概念改變的幫助較大,而對國中與高中學生建模能力的提升較佳。(二)類比建模教學對國小與高中學生力學概念改變的幫助較大,而對國中與高中學生建模能力的提升較佳。(三)思考建模教學對國中與高中學生力學概念改變的幫助較大,而對國中與高中學生建模能力的提升較佳。(四)三種建模教學對於學生力學概念的改變無顯著的差異,但對建模能力的提升有顯著的差異;其中,電腦與類比建模教學對跨年級學生均合適,而思考建模教學較適合於國中、高中學生。
綜上所述,以「新-心智模式架構」解釋概念運作的機制,不僅顧及多面向的研究結果,在實徵研究上亦可重新審視VCD等人的理論觀點,針對跨年級學生力學心智模式架構的差異情形進行多元的探討。此外,研究者基於建模能力分析指標,分析跨年級學生的各項建模能力,藉以探討不同年級學生經建模教學後的學習成效;結果發現,國中與高中學生建模能力的學習成效較佳,若能在中學課室中融入建模教學,將有助於學生們對力學概念的學習。
This study proposed a “new framework of mental model” with integration of Vosniadou’s, Chi’s, and diSessa’s theories (VCD’s theory in short). Based on VCD’s theory, the main purpose is to use the “new framework of mental model” to analyze students’ conceptual operation and their consistency of mental models of the concepts of force. Moreover, in order to investigate students’ conceptions about force and their modeling abilities, the researcher adopted the questionnaire of diagnosing force concepts designed by Ioannides & Vosniadou (2001) and the questionnaire of force modeling ability proposed by Chiu (2007). The “Modeling Ability Analytic Index were adopted from Chang & Chiu (2009) for the purpose of identifying the students’ modeling ability.
There are four stages in this study. Firstly, the researcher analyzed K-12 students’ frameworks of mental model of force concept (N=48). The research findings revealed that: (1) The percentage of cross-age students whose resources of mental model are from domain-specific became higher with increasing the grades of students. (2) The percentage of students who hold incorrect presupposition became lower with increasing the grades of students. (3) The percentage of students who use process concepts became higher with increasing the grades of students. (4) The percentage of students who hold scientific model became higher with increasing the grades of students. (5) For all participants, the correlational coefficient (Φ) is significant between each sub-framework (context, concept, and mental model).
Secondly, the researcher analyzed students’ consistency of mental model of force concept. The research findings revealed that: before and after modeling instruction, 48 students had not learned the related concept of force, their consistency of mental model of force concept is 83%. Besides, 48 students’ categorical consistency of mental model of force concept is 85% when they responded each item in the questionnaire of force concept. Therefore, the 48 students’ mental model has high degree of consistency and the result is similar to Vosniadou’s view.
Thirdly, the researcher analyzed K-12th students’ performance of force concept and modeling ability before and after computer-based, analogy-based, and thought experiment based modeling instructions. The research findings revealed that: (1) All instructions could improve students’ force concept and modeling ability significantly (tforce concept=6.424*; tmodeling ability=11.795*)。(2) There was no significant difference between three modeling instructions, but significant difference between each grade of students (p<.05). Besides, the post-test score became higher with increasing the grade of students. (3) The worst is thought experiment based modeling instruction, and the effect is significant difference (p<.05) between computer-based (or analogy-based) and thought experiment based modeling instruction. Besides, 7-12 grade students’ post-test score is higher than K-6 grade students significantly (p<.05). Therefore, modeling instruction could not only improve students to get more process concept of force, but also promote students’ modeling ability. However, there are some difference between cross grades and three modeling instructions.
Finally, the researcher analyzed the effect of cross-age students’ force concept and modeling abilities with different modeling instructions. The research findings revealed that: (1) The computer-based modeling instruction was helpful for 1st-9th grade students to get conceptual change of force, and to promote 7th-12th grade students’ modeling ability more obviously. (2) The analogy-based modeling instruction was helpful for 1st-6th and 10th-12th grade students to get conceptual change of force, and promote 7th-12th grade students’ modeling ability more obviously. (3) The thought experiment based modeling instruction was helpful for 7th-12th grade students to get conceptual change of force, and promote their modeling ability more obviously. (4) There was no significant difference for students’ conceptual change of force between three modeling instructions, but a significant difference existing for promoting students’ modeling ability.
In sum, exploring students’ process of conceptual operation with “new framework of mental model” can not only get multi-facet research findings, but also can re-test the VCD’s theory in empirical research that will explain the difference between different grade students with multi-facets. In addition, based on “Modeling Ability Analytic Index”, the researcher analyzed modeling ability in all stages for different grade students to discuss the performance of modeling ability after they got modeling related instruction. The result revealed that 7th-12th grade students’ performance of modeling ability is better than K-6th grade students. If teachers use the modeling approach in their classroom teaching, students might be able to get better learning for force concept.
中文部份
全中平(1993): 國民小學五年級學生對力與運動概念之分析研究。行政院國家科學委員會專題研究計畫成果報告, NSC81-0111-S152-502-N。
全中平(1994): 師範學院學生對學習物理力學概念之分析研究。國立臺北師範學院學報, 7, 481~506。
任宗浩(2001)﹕心智模式動態變化之研究-物理現象的觀察與詮釋。科學教育學刊, 9(2), 147-168。
吳怡嫺(2007): 跨年級學生氣體心智模式演變歷程之探究與分析。國立台灣師範大學科學教育研究所碩士論文(未出版)。
吳明珠(2008): 科學模型本質剖析:認識論面向初探。科學教育月刊, 307, 2-8。
周金城(2008): 探究中學生對科學模型的分類與組成本質的理解。科學教育月刊, 306, 10-17。
林靜雯(2006): 由概念演化觀點探究不同教科書教-學序列對不同心智模式學生電學學習之影響。國立台灣師範大學科學教育研究所博士論文(未出版)。
林靜雯與邱美虹(2008): 從認識/方法論之向度初探高中學生模型及建模歷程之知識。科學教育月刊, 307, 9-14。
邱美虹(2000): 概念改變研究的省思與啟示。科學教育學刊, 8(1), 1-34。
邱美虹(2007): 建模能力分析指標的應用-以電化學為例,行政院國家科學委員會專題研究計畫成果報告, NSC 95-2511-S-003-024-MY2。
邱美虹(2008): 模型與建模能力之理論架構。科學教育月刊, 306, 2-9。
邱美虹與林靜雯(2002): 以多重類比探究兒童電流心智模式之改變。科學教育學刊, 10(2), 109-134。
施宗翰(2008): 探討八年級學生對力持有的「意義」、「心智模式」與「內在一致性」。國立台灣師範大學科學教育研究所碩士論文(未出版)。
張志康與邱美虹(2009): 建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,審稿中。
郭重吉與楊其安(1989): 利用臨床晤談探究國中學生對力學概念的另有架構。科學教育, 1, 37-59
陳盈吉(2004): 探究動態類比對於科學概念學習與概念改變歷程之研究-以國二學生學習氣體粒子概念為例。國立台灣師範大學科學教育研究所碩士論文(未出版)。
楊其安(1989): 利用臨床晤談探究國中學生對力學概念的另有架構。國立彰化師範大學科學教育研究所碩士論文(未出版)。
董正玲與郭重吉(1992): 探究國小兒童運動與力概念的另有架構。科學教育, 93-121。
歐陽鍾仁(1988): 科學教育概論, 台北: 五南圖書出版公司。
簡于智(2008): 以p-prim探究學生學習「力與運動概念」時的學習路徑。國立台灣師範大學科學教育研究所碩士論文(未出版)。
英文部分
AAAS. (1993). Benchmarks or Science Literacy. New York: Oxford University Press.
Alles, D. L. (2005). The nature of evolution. The American Biology Teacher, 67(1), 7-10.
Anderson, A., Tolmie, A., Howe, C. J., Mayes, J. T., & Mackenzie, M. (1992). Mental models of motion. In Rogers, Y., Rutherford, A., & Bibby, P. (Eds.) Models in the mind: Theory, Perspective and Application. London: Academic Press.
Anderson, C. W., & Smith, E. L. (1987). Teaching science. In Richardson-Koehler. (Eds), Handbook: A research perspective. White Plains, NY: Longman, Inc.
Arnaudin, M. W., & Mintzes J. J. (1985). Students’ alternative conceptions of the human circulatory systems: A cross-age study. Science Education, 69(5), 721-733.
Au, T. K. (1994). Developing an intuitive understanding of substance kinds. Cognitive Psychology, 27(1), 71-111.
Basteson, G. (1973). Steps to an Ecology of Mind. London: Paladin.
Biggs, J. B. (1995). Assessing for learning: Some dimensions underlying new approaches to educational assessment. The Alberta Journal of Educational Research, 41(1), 1-17.
Biggs, J. B., & Collis, K. F. (1982). Evaluating the Quality of Learning: the SOLO taxonomy. New York: Academic Press.
Bliss, J., Ogborn, J., & Whitelock, D. (1989). Secondary school pupils’ commonsense theories of motion. International Journal of Science Education, 11(3), 261-272.
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. (1956). Taxonomy of educational objectives: the cognitive domain. New York: David McKay Company.
Brown, D., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning:Abstract transfer versus explanatory model construction. Instructional Science, 18, 237-261.
Buckley, B. C. & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed in Building Mental Models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in Science Education (pp.119-135). Netherlands: Kluwer academic Publisher.
Caravitam S., & Halldén, O. (1994). Re-framing the problem of conceptual change [special issue]. Learning and Instruction, 4, 89-111.
Carey, S. (1985). Conceptual Change in Childhood. Cambridge, MA:MIT Press.
Carey, S. (1991). Knowledge acquisition: Enrichment or conceptual change? In S. Carey & R. Gelman (Eds.), The epigenesist of mind (pp. 257-291). Hillsdale, NJ: Lawrence Erlbaum Associates.
Carey, S., & Spelke, E. (1994). Domain-specific knowledge and conceptual change. In L. A. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 169-200). New York: Cambridge University Press.
Chan, C. C., Tsui, M. S., & Chan, M. Y. C. (2002). Applying the structure of the observed learning outcomes (SOLO) taxonomy on students’ learning outcomes: an empirical study. Assessment & Evaluation in Higher Education, 27(6).
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive Models of Science: Minnesota Studies in the Philosophy of Science, (pp. 129-186). University of Minnesota Press: Minneapolis, MN.
Chi, M. T. H. & Roscoe, R.D. (2002). The processes and challenges of conceptual change. In M. Limon and L. Mason (Eds.), Reconsidering Conceptual Change: Issues in Theory and Practice. Kluwer Academic Publishers, The Netherlands, pp 3-27.
Chi, M. T. H., Siler, S. A., & Jeong, H. (2004). Can tutors monitor students’ understanding accurately? Cognition and Instruction, 22(3), 363-387.
Chinn, C. A. & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49.
Chiu, M. H. (2008). Research And Instruction-Based/Oriented Work (RAINBOW) for conceptual Change in Science Learning – An Example of Students’ Understanding of as Particles. Paper present at the NARST 2008, March 29 – April 2, Baltimore, U.S.A.
Clark, D. B. (2006). Longitudinal conceptual change in students’ understanding of thermal equilibrium: An examination of the process of conceptual restructuring. Cognition and Instruction, 24(4), 467-563.
Clement, J. (1982). Students’ preconceptions in introductory physics. American Journal of Physics, 50, 66-70.
Clement, J. (1989). Learning via model construction and criticism. In G. Glover, R. Ronning & C. Reynolds (Eds.), Handbook of creativity, assessment, theory and research. New York: Plenum.
Clement, J. (1993). Using bridge analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.
Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053.
Cohen, G. (1983). The psychology of cognition. New York: Academic Press, Inc.
Cohen, M. (2005). Wittgenstein’s beetle and other classic thought experiments. 陳信宏譯, 維根斯坦的甲蟲-26個讓你腦力升級的哲學思想實驗, 台北市: 麥田出版社。
Collins, A., Brown, J. S., & Newman, S. E. (1987). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. In L. Resnick (Ed.), Learning, knowing, and instruction: Essays in honor of Robert Glaser (pp. 453–494). Hillsdale, NJ: Lawrence Erlbaum.
Craik, K. J. W. (1943). The Nature of Explanation. Cambridge, UK: Cambridge University Press.
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. United Kingdom: John Murray.
Davis, J. (2001). Conceptual Change. In M. Orey (Ed.), Emerging perspectives on learning, teaching, and technology. Retrieved from http://www.coe.uga.edu/epltt/conceptualchange.htm
de Jong, T., van Joolingen, W. R., Lazonder, A., Ootes, S., Savelsbergh, E. R., & Wilhelm, P. (2002). Co-Lab specifications; Part 1 Theoretical background (Technical Report). Netherlands: University of Twente.
de Kleer, J., & Brown, J.(1983). Assumptions and ambiguities in mechanistic mental models. In D. Gentner and A. Stevens (Eds.), Mental models. Lawrence Erlbaum Associates, Hillsdale, N. J.
diSessa, A. A. (1988). Knowledge in Pieces. In G. Foreman & P. Pufall (Eds.), Constructivism in the computer age. (pp. 49-70). Mahwah, NJ: Lawrence Erlbaum Associates.
diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2/3), 105-225.
diSessa, A. A., Gillespie, N. M., & Esterly, J. B. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28(6), 843-900.
Dori, Y. J., & Belcher, J. (2007). Learning electromagnetism with visualizations and active learning. In J. K. Gilbert (Eds.), Visualization in Science Education (pp. 187-216). Netherlands: Kluwer Academic Publishers.
Driver, P. (1985). Children’s Ideas in Science. Buckingham: Open.
Driver, R. (1981). Pupils’ alternative frameworks in science. European Journal of Science Education, 3(1), 93-101.
Driver, R., & Bell, B. (1986). Students' Thinking and the Learning of Science: A Constructivist View. School Science Review, 67, 443-456.
Duit, R. (1991). On the role of analogies and metaphor in learning science. Science Education, 75(6), 649-672.
Duit, R., & Glynn, S. (1996). Mental modeling. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe (pp. 166-176). London: Falmer Press.
Duit, R., & Treagust, D. F. (1995). Students’ conceptions and constructivist teaching app-roaches. In B. J. Fraser & H. J. Walberg (Eds.), Improving science education. Chicago: The National Society for the Study of Education.
Duit, R., & Treagust, D. F. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
Duschl, R. A., & Gitomer, R. J. (1991). Epistemological perspectives on conceptual change: Implications for educational practice. Journal of Research in Science Education, 28(9), 838-839.
Dykstra, D. I., Boyle, C. R., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76(6), 615-652.
Eckstein, S. G., & Shemesh, M. (1989). Development of children’s ideas on motion: Intuition vs. logical thinking. International Journal of Science Education, 11, 327–336.
Fensham, P.J. & Kass, H. (1988). Inconsistent or discrepant events in science instruction. Studies in Science Education, 15, 1-16.
Finegold M., & Gorsky, P. (1991). Students’ concepts of force as applied to related physical systems: A search for consistency. International Journal of Science Education, 13, 97–113.
Finegold, M., & Grosky, P. (1988). Learning about forces: Simulating the outcomes of pupils’ misconceptions. Physics all Science, 17, 251-261.
Franco, C., de Barros, H. L., Colinvaux, D., Krapas, S., Queiroz, G., & Alves, F. (1999). From scientists’ and inventors’ minds to some scientific and technological products: relationships between theories, models, mental models and conceptions. International Journal of Science Education, 21(3), 277-291.
French, A. P. (1971). Newtonian mechanics. New York: Norton.
Galili, I., & Bar, V. (1992). Motion implies force: Where to expect vestiges of the misconception? International Journal of Science Education, 14, 63–81.
Geelan, R. G. (1997). Epistemological Anarchy and the Many Forms of Constructivism. Science and Education, 6, 15-28.
Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental Models. Hillsdale, NJ: Lawrence Erlbaum.
Gilbert, J. (1993). The role of models and modeling in science education. Paper presented at the 1993 Annual Conference of the National Association for Research in Science Teaching, Atlanta, GA, USA.
Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht, The Netherlands: Kluwer Academic Publisher.
Gilbert, J., & Boulter, C. (1998). Learning science through models and modeling. In B. Fraser & K. Tobin (Eds), International Handbook of Science Education (pp. 52-66).
Gilbert, S. W. (1991). Model building and definition of science. Journal of Research in Science Teaching, 28, 73-79.
Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In Glynn, S. M. & Duit, R. (Eds.). Learning science in the schools: Research reforming practice (pp. 247-273). Mahwah, NJ: Erlbaum.
Greca, I. M., & Moreira, M. A., (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11.
Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science education: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799-822.
Gunstone, R. & Watt, M. (1983). Force and motion. In R. Driver, E. Guesene, & A. Tiberghien (Eds.), Children’s Ideas in Science. Philadelphia: Milton Keynes, Open University Press.
Gunstone, R. F., & White, R. (1981). Understanding of gravity. Science Education, 65, 291-299.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53, 1043-1055.
Harre, R. (1986). Varieties of Realism. Cambridge: Cambridge University Press.
Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509-534.
Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026.
Hashweh, M. Z. (1986). Toward and explanation of conceptual change. European Journal of Science Education, 8(3), 229-249.
Hestenes, D. (1995). Modeling software for learning and doing physics. In Bernardini, C., Tarsitani, C., & Vincentini, M. (Eds.). Thinking physics for teaching. (pp. 25-66.) New York: Plenum.
Hestenes, D. (1997). Modeling methodology for physics teachers. Proceedings of the International Conference on Undergraduate Physics Education (College Park, August 1996).
Hestense, D., Wells, M., & Swackhamer, G. (1992). Force Concept Inventory, Physics Teaching, 30, 141-158.
Hogan, K., & Thomas, D. (2001). Cognitive comparisons of students’ systems modeling in ecology. Journal of Science Education and Technology, 10(4), 319-344.
Hughes, I. E. (2002). Computer-based learning – an aid to successful teaching of pharmacology? Naunyn-Schmiedeberg’s Arch Pharmacol, 366, 77–82
Ioannides, C., & Vosniadou, C. (2001). The changing meaning of force. Cognitive Science Quarterly, 2, 5-61
Johnson-Laird, P. N. (1983). Mental models. Cambridge: Harvard University Press.
Johnson-Laird, P. N. (1994). Mental Models, Deductive Reasoning, and the Brain. In M. S. Gazzaniga (Ed.), The Cognitive Neural Science (pp. 999-1008). Cambridge: The MIT Press.
Johnson-Laird, P. N., & Byrne, R. (2000). A Gentle Introduction. Mental Model Website, http://www.tcd.ie/Psychology/Ruth_Byrne/mental_models/.
Justi, R. S. & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
Justi, R. S. & Gilbert, J. K. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25(11), 1369-1386.
Justi, R. S., & Driel, J. v. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modeling. Research in Science Education, 35(2-3), 197-219.
Justi, R. S., & Gilbert, J. K. (2002a). Modeling, Teacher’s views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387.
Justi, R. S., & Gilbert, J. K. (2002b). Models and modeling in chemical education. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust & J. H. V. Driel (Eds.), Chemical education: Towards research-based practice (pp. 47-68).
Justi, R. S., & Gilbert, J. K. (2003). Teacher’s view on the nature of models. International Journal of Science Education, 25(11), 1369-1386.
Keil, F. (1979). Concepts, kinds and cognitive development. Cambridge, MA: MIT Press.
Keil, F. C. (1999). Conceptual change. In R. A. Wilson & F. C. Keil (Eds.), The mite cyclopedia of cognitive sciences. Cambridge, MA: MIT Press.
Keith, S. T. (2000). Chemistry lessons for universities: a review of constructivist ideas. Retrieved from http://www.rsc.org/pdf/uchemed/papers/2000/42_taber.pdf.
Kember, D., Jones, A., Loke, A., McKay, J., Sinclair, K., Tse, H., et al. (1999). Determining the level of reflective thinking from students’ written journals using a coding scheme based on the work of Mezirow. International Journal of Lifelong Education, 18(1), 18-31.
Klausmeier, H. J. (1974). Conceptual Learning and Development. New York Academic Press.
Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd edition). Chicago: University of Chicago Press.
Lakatos, I. (1970). Falsification and the methodology of scientific research programmers. In I. Lakatos and A. Musgrave (Eds.), Criticism and the growth and the knowledge (pp, 91-195). Cambridge: Cambridge University press.
Lohner, S., Van Joolingen, W. R., Savelsbergh, E. R., & van Hout-Wolters, B. H. A. M. (2005). Students’ reasoning during modeling in an inquiry learning environment. Computers in Human Behavior, 21(3), 441-461.
McCloskey, M. (1983). Naïve theory of motion. In Gentner, D. & Stevens, A. L. (Eds.), Mental Models. (pp. 299-324). N. J. Hillsdale: Lawrence Erlbaum Associates.
Medin, D. L., & Smith, E. E. (1981). Strategies and Classification Learning. Human Learning and Memory. Journal of Experimental Psychology, 7(4), 241-253.
Meheut, M. (2004). Designing and validating two teaching-learning sequences about particle models. International Journal of Science Education, 26(5), 605-618.
Mervis ,C.& Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89-115.
Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. In R. Duit, F. Goldberg, & H. Neidderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 110-127). Kiel, Germany: IPN.
Murphy, G. L. (2002). The Big Book of Concepts. Cambridge: MIT Press
Nersessian, N. (1995). Should physicists preach what they practice? Science and Education, 4, 203-226.
Nersessian, N. J. (1993). In the theoretician’s laboratory: thoughtful experimenting as mental modeling. In D. Hull, M. Forbes, & K. Okruhlik (Eds.), PSA 1992, 2 (pp. 291-301). East Lansing, MI: Philosophy of Science Association.
Norman, D. A. (1983). Some observations on mental models. In D. Gentner and A. Stevens (Eds.), Mental Models. (pp.7-14). Hillasdale, NJ: Erlbaum.
Novak, J. D. (1988). Learning science and the science of learning. Studies in Science Education, 15, 77-101.
NSC. (1996). National Science Education Standards. Washington: National Academy Press.
Nussbaum, J., & Novick, N. (1982). Alternative frameworks, conceptual conflict, and accommodation: Toward a principled teaching strategy. Instructional Science, 11, 183-200.
Ohlsson, S. (1984). Induced strategy shifts in spatial reasoning. Acta Psychologica, 57, 46-67.
Osborn, M. (1996). The Enduring Heart of the Public Speaking Course. Paper presented at the Annual Meeting of the Speech Communication Association (82nd, San Diego, CA, November 23-26, 1996).
Palmer, D., & Flanagan, R. (1997). Readiness to change the conception that “motion-implies-force”: a comparison of 12-year-old and 16-year-old students. Science Education, 81(3), 317-331.
Pella, M. O. (1966). Concept learning in science. The Science Teacher, 33(1), 31.
Pella, M. O. (1975). Concept of concept. University of Wisconsin-Madison Press.
Perkins, D. N., & Simmons, R. (1988). Patterns of misunderstanding: An integrative model for science, math, and programming. Review of Educational Research, 58(3), 303-326.
Pfundt, H., & Duit, R. (1994). Bibliography-Students alternative frameworks and science education. Kiel, Germany: University of Kiel Institute for Science Education.
Piaget, J. (1950). The psychology of intelligence. London: Routledge and Kegan Paul.
Piaget, J. (1972). The psychology of the child. New York: Basic Books.
Piaget, J. (1973). The formation of the notion of force. Lonton: Routledge & KeganPaul.
Piaget, J. (1985). The equilibration of cognitive structures. Chicago: University of Chicago Press.
Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond conceptual change:The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Education Research, 63, 176-199.
Pintrich, P.R. (1999). Motivational beliefs as resources fo and constraints on conceptual change. In Schnotz, W., Vosniadou, S. & Carretero, M. (Eds.), New perspectives on conceptual change.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-227.
Posner, G.J. & Strike, K. A. (1985). A Conceptual Change View of Learning and Understanding. In L. H. T. West & A.L. Pines (Eds.), Cognitive structure and conceptual change. New York: Academic Press, INC., pp.211-232.
Raghavan, K., Sartoris, M. L., & Glasser, R. (1998). Why Does It Go Up? The Impact of the MARS Curriculum as Revealed through Changes in Student Explanations of a Helium Balloon. Journal of Research in Science Teaching, 35(5), 547-567.
Ranney, T. A. (1994). Models of driving behavior: A review of their evolution. Accident Analysis and Prevention, 26, 733-750.
Reiner, M., & Slotta, J. D., & Chi, M. T. H., & Resnick, L. B. (2000). Naïve physics reasoning: a commitment to substance-based conceptions. Cognition and Instruction, 18(1), 1-34.
Resnick, L. B. (1983). Mathematics and science learning: A new conception. Science, 220, 477-478.
Rieber, L. P. (2002). Supporting discovery-based learning with simulations. Invited presentation at the International Workshop on Dynamic Visualizations and Learning, Knowledge Media Research Center, Tubingen, Germany, Available: http://www.iwmkmrc.de/workshops/visualization/rieber.pdf
Rumelhart, D. E. & Norman, D. A. (1981). Analogical Processes in Learning. In Anderson, J. R. (Eds). Cognitive Skills and Their Acquisitions. Lawrence Erlbaum Associates. Hillsdale, new Jersey.
Saari, H. & Viiri, F. (2003). A research-based teaching sequence for teaching the concept of modeling to seventh-grade students. International Journal of Science Education, 25(11), 1333-1352.
Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: developing students' understanding of scientific modeling. Cognition & Instruction, 23(2), 165-205.
Sins, P. H. M., Savelsbergh, E. R., & Joolingen, W. R. V. (2005). The Difficult Process of Scientific Modeling: An analysis of novices’ reasoning during computer-based modeling. International Journal of Science Education, 27(14), 1695-1721.
Sison, R. and Shimura, M. (1998). Student modeling and machine learning. International Journal of Artificial Intelligence in Education, 9, 128-158.
Snow, C. P. (1963). The Two Cultures, and a Second Look. Cambridge: Cambridge University Press.
Solomon, J. (1994). The Rise and Fall of Constructivism. Studies in Science Education, 23, 1-19.
Sommers, F. (1971). Structural Ontology. Philosophia, 1:21-42.
Stratford, S. J., & Soloway, E. (1998). Secondary students’ dynamic modeling processes: Analyzing, reasoning about, synthesizing, and testing models of stream ecosystems. Journal of Science Education and Technology, 7(3), 215-234.
Streri, A. & Spelke, A. S. (1988). Haptic perception of objects in infancy. Cognitive Psychology, 20(1), 1-23.
Strike, K. A. & Posner, G. J. (1992). A revisionist theory of conceptual change .In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, Cognitive psychology, and educational theory and practice. Albany, NY: SUNY press, 147-176.
Sutton, C. (1996). The scientific model as a form of speech. In G. Welford, J. Osborne & P. Scott (Eds.), Research in Science Education in Europe.
Tao, P. K., & Gunstone, R. (1999). The process on conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36(7), 859-882.
Terry, C. & Jones, G. (1986). Alternative framework: Newton’s third law and conceptual change. European Journal of Science Education, 8, 291-298.
Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Thijs, G. (1992). Evaluation of an Introductory Course on “force” Considering Students’ preconceptions. Science Education, 76(2), 155-174.
Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts. Princeton: Princeton University Press.
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
Trowbridge, J. E. & Mintzes, J. J. (1988). Alternative conceptions in animal classification: A cross-age study. Journal of Research in Science Teaching, 25(7), 547-571.
Trumper, R., & Gorsky, P. (1993). Learning about energy: The influence of alternative frameworks, cognitive levels, and closed-mindedness. Journal of Research in Science Teaching, 30(7), 637-648.
Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1996). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4), 387-404.
Tytler, R. (1998). Children's conceptions of science education. International Journal of Science Education , 20(8), 929-958.
Van Driel, J. H., & Verloop, N. (1999). Teacher’s knowledge of models and modeling in science. International Journal of Science Education, 21(11), 1141-1154.
Venville, G. J. & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretative framework. Journal of Research in Science Teaching, 35, 1031-1055.
Viscuso, S. R., & Spoehr, K. T. (1986). How does a mental model facilitate comprehension of instructions? Paper presented at the annual meeting of the Psychonomic Society, New Orleans, LA, November.
Vosniadou, S. & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
Vosniadou, S. (1993). Universal and culture-specific properties of children's mental models of the earth. In Hirschfeld, D. & Gelman, S. (Eds.). Mapping the mind. New York: Cambridge University Press.
Vosniadou, S. (1994). Capturing and Modeling the Process of Conceptual Change. In S. Vosniadou (Guest Editor), Special Issue on Conceptual Change, Learning and Instruction, 4, 45-69.
Vosniadou, S., & Ioannides, C. (1998). From Conceptual Development to Science Education: A Psychological Point of View. International Journal of Science Education, 20(10), 1213-1230.
Vygotsky, L. S. (1962). Development of science concepts in childhood. In E. Hanfman & G. Vakar (Eds), Thought and Language (pp. 82-118). Cambridge, MA: MIT Press.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp.177-210). New York: Mqacmillan.
White, B. (1983). Sources of difficulty in understanding Newtonian dynamics. Cognitive Science, 7(1), 41-65.
Williams, M. D., Hollan, J. D., & Stevens, A. L. (1983). Human Reasoning About a Simple Physical System. In D. Getner & A. L. Stevens (Eds.), Mental Models (pp. 131-153). NJ: Lawrence Erlbaum Associates.
Zeitoun, H. H. (1984). Teaching scientific analogies: A proposed model. Research in Science and Technological Education, 2, 107-125.