簡易檢索 / 詳目顯示

研究生: 洪瑞成
Hong, Rui-Cheng
論文名稱: 建構學習輔助科技需求考量因素及工具之研究-以閱讀學習輔助科技為例
Research on constructing the causal model for considering the needs of assistive technology for learning: the consideration tools for reading assistive technology
指導教授: 林幸台
Lin, Hsin-Tai
學位類別: 博士
Doctor
系所名稱: 特殊教育學系
Department of Special Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 138
中文關鍵詞: 學習輔助科技閱讀學習輔助科技需求考量工具閱讀困難PLS-SEM
英文關鍵詞: learning assistive technology, tool for reading assistive technology needs consideration, reading difficulties, PLS-SEM
DOI URL: http://doi.org/10.6345/NTNU202001154
論文種類: 學術論文
相關次數: 點閱:302下載:59
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在建構學習輔助科技需求考量之因素及結構模式,並以閱讀學習輔助科技為例發展需求考量工具。依據研究目的本研究分為兩個子研究,研究一為探討學習輔助科技需求考量因素與結構模式,以67位美國輔助科技專業人員以及60位我國特殊教育人員為對象,了解研究者由輔助科技模式提取歸納出的能力、表現、動機、學習輔助科技知識經驗四項因素,是否會影響輔助科技專業及特殊教育人員對學習輔助科技需求覺知。再依輔助科技模式理論之關係,將四項因素作為潛在因素建構學習輔助科技需求考量結構模式,利用PLS-SEM分析測量模式及因果路徑模式之適配度,依分析驗證結果據以修正結構模式,同時使用PLS的多族群分析(MGA)技術,分析美國與我國資料樣本投入該結構模式時是否有差異,以確認該結構模式於我國教育現場使用之適切性。研究二則利用研究一所建構之因素與結構模式,由研究者與兩位專家共同發展閱讀學習輔助科技需求考量工具,並邀請10位分布於各縣市不分類資源班教師,以其服務的3位閱讀困難學生為對象使用工具進行閱讀學習輔助科技需求之考量,蒐集30位學生的閱讀學習輔助科技需求評估結果,並依分析結果訪談10位教師使用工具之感受。綜整研究一及研究二之結果,提出研究結論如下:
一、 學習能力、學習表現、學習動機、學習輔助科技知識經驗四項因素會影響學習輔助科技需求之考量。以四項因素進行學習輔助科技需求判定時,美國輔助科技專業人員與我國特殊教育專業人員在不同因素下也有差異。
二、 以學習能力、學習表現、學習動機、學習輔助科技知識經驗四項因素所建構的結構模式,在測量模式與因果路徑模式皆通過PLS-SEM之驗證標準,因素結構具信、效度且與理論相符。以美國輔助科技專業人員為資料樣本所建構的學習輔助科技結構模式與我國特殊教育專業人員在結構模式之多族群分析並無顯著差異。
三、 閱讀學習輔助科技需求考量工具為一含括需求考量評估、需求考量建議與資源提供之三步驟整合性工具,作為需求考量評估步驟之閱讀學習輔助科技需求考量評估表具備可接受的信、效度。使用之教師對該工具功能性與實用性之感受皆給予肯定且正向的回饋。
依據以上研究結果,研究者提出學習輔助科技考量因素及工具在實務應用與未來研究之建議。

The purpose of this research is to construct the factors and causal models for the consideration of learning assistive technology needs and to develop the tool for teacher to consider the needs of reading assistive technology. This research is divided into two sub-studies. The first study is to explore the factors and structural models of learning assistive technology needs. Four factors: capability, performance, motivation, and assistive technology knowledge and experience were retrieved from 15 AT conceptual models. 67 assistive technology professionals and specialists in U.S and 60 special education professionals in Taiwan were invited to participate in the survey to test whether the four factor will affect the recognition of the learning assistive technology needs. Based on the theory of AT model, four factors were used as potential factors to construct the casual model of learning assistive technology needs consideration. Researcher used the PLS-SEM to analyze the fitness of measurement model and casual model, and based on the result to fix the model. When the model fits the standard of PLS-SEM, PLS MGA was used to check the difference between the group of data from U.S and Taiwan to ensure the model can be also used in Taiwan. In the second study, two special education teachers who were proficient in assistive technology and learning disability were invited by researcher to develop the tool for the consideration of reading assistive technology needs by using the factors and model constructed in first study. There were 10 special education teacher who served in resource classroom in different county in Taiwan participated the study, each of them was requested to evaluate 3 students who were qualified with learning disabilities and reading difficulties by using the tool for consideration of reading assistive technology needs. 30 student’s data of reading assistive technology needs were collected and analyzed. With the data, researcher conducted the Semi-Structured Interviews to the 10 teachers to know the feelings and feedback about the tool they used to considerate the reading assistive technology needs for the students. The results of Study 1 and Study 2 were hereby presented as follows:
1. The four factors: capability, performance, motivation, and learning assistive technology knowledge and experience will affect the consideration of learning assistive technology needs. There were differences between assistive technology professionals and specialists in U.S and special education professionals in Taiwan under different factors when recognizing the learning assistive technology needs.
2. The model constructed with four factors: capability, performance, motivation, and learning assistive technology knowledge and experience. Both the measurement model and causal model fitted PLS-SEM standard, and the outer model had acceptable reliability and validity, and the inner model was consistent with theory. There is no significant difference by using PLS Multi-Group Analysis to analyze the respondents of special education professionals in our country and assistive technology professionals and specialists in U.S as data samples in the model.
3. Assistive Technology Needs Consideration Tool for Reading is a three-step integrated tool that included needs evaluation, advice of needs consideration, and resource index. The Reading Assistive Technology Needs Evaluation Form, one of the tool for considering the reading assistive technology needs, had acceptable reliability and validity. 10 teachers all gave the tool a positive review and felt the tool produced a useful suggestion when considering the reading assistive technology needs and plan the special education service for the students.

第一章 緒論 1 第一節 研究動機與背景 1 第二節 研究目的 5 第三節 研究問題 5 第四節 名詞解釋 6 第二章 文獻探討 7 第一節 輔助科技在特殊教育理論的重新檢視與思考 7 第二節 輔助科技需求考量時機的抉擇-補救與補償 15 第三節 學習輔助科技需求考量因素之探究 18 第四節 學習輔助科技需求考量工具之實務探究 26 第五節 閱讀困難、閱讀學習活動與學習輔助科技考量因素 34 第三章 研究設計 40 第一節 整體研究設計流程 40 第二節 研究一:學習輔助科技需求考量因素與結構模式 43 第三節 研究二:閱讀輔助科技需求考量工具發展 50 第四節 資料處理與分析 57 第四章 研究結果與討論 63 第一節 影響學習輔助科技需求考量之因素 63 第二節 學習輔助科技需求考量因素之結構模式 71 第三節 發展閱讀學習輔助科技需求考量工具 79 第五章 結論與建議 99 第一節 研究結論 99 第二節 研究限制 102 第三節 研究建議 103 參考文獻 106 中文部分 106 外文部分 110 附錄 115 附錄一 我國識字及閱讀理解評量工具一覽表 115 附錄二 學習輔助科技需求考量覺知問卷中、英文版題目對照表 117 附錄三 AT模式共同詞彙潛在語意分析兩兩比對關聯性結果一覽表 120 附錄四 閱讀學習輔助科技需求評估表題項初稿 121 附錄五 閱讀學習輔助科技需求考量評估表 127 附錄六 閱讀學習輔助科技需求考量建議報表組型欄位 138

中文部分
王郁琮、溫福星(2011):混合因素分析對群體異質性之探索: 以國中生學業困擾二元資料為例。教育與心理研究,34(3),37-63。
王郁翔、朱淳琦(2013):電腦閱讀輔具對提升閱讀困難學生之閱讀成效的初試。台東特教,37,26-31。
王詩妮、吳東光、孟瑛如(2014):多媒體註解輔助低閱讀能力學生線上閱讀理解之成效研究。人文社會學報,10(4),333-352。
王瓊珠(2001):台灣地區讀寫障礙研究回顧與展望。國家科學委員會研究彙刊:人文及社會科學, 11(4), 331-344。
王瓊珠、洪儷瑜、陳秀芬(2007):低識字能力學生識字量發展之研究─馬太效應之可能表現。特殊教育研究學刊,32(3),1-16。
王櫻瑾(2007):從教育調整的向度看融合教育下的調整策略。屏師特殊教育,14,56-64。
朱明建、莊素貞(2011):國小身心障礙類特教班教師輔助性科技專業知能之調查研究-以中部地區為例。明道學術論壇,7(3),183-202。
朱經明(1996):閱讀障礙與電腦輔助教學。特殊教育與復健學報,4,153-161。
吳明隆、涂金堂(2005):SPSS與統計應用分析。台北:五南。
吳東光,孟瑛如(2007):資訊科技於輔助特教診斷暨支援特教行政與教學之應用。教育資料與研究,78,205-226。
吳亭芳、陳明聰(2000):我國特殊教育輔助性科技政策之調查研究。特殊教育研究學刊,20,47-68。
吳亭芳、陳明聰、王華沛(2000):運用輔助性科技實踐融合教育理念。載於中華民國特殊教育學會主編:e 世代特殊教育(33-46頁)。台北:中華民國特殊教育學會。
吳亭芳、陳明聰、王曉嵐(2007):輔助性科技服務模式之探討,特殊教育季刊,103,32-40。
吳淑娟(2000):國小閱讀理解困難學童之詞彙能力分析研究(未出版)。國立臺灣師範大學特殊教育學系碩士論文,臺北。
李政忠(2004) :網路調查所面臨的問題與解決建議。資訊社會研究,6,1-24。
李慶良(2002):美國一九九七年 IDEA 修正案的研究。載於國立臺中師範學院特殊教育中心主編:特殊教育論文集(特殊教育叢書9101)(56-113頁)。台中:國立臺中師範學院特殊教育中心。
孟瑛如、吳東光(2004):資源班教師對IEP電腦化之接受度與應用現況探析。特殊教育研究學刊,26,61-87。
孟瑛如、吳東光、陳虹君(2014):RTI 理念融入多媒體閱讀理解教材以提升一般生及閱讀低成就學生在閱讀及識字成效之教學研究。臺中教育大學學報,28(1),1-23。
孟瑛如、林淑惠、吳東光(2006):提升網路閱讀的影響力與可及性-以學習障礙學生為例。特教論壇,1,44-54。
孟瑛如、張淑蘋、范姜雅菁、楊佩蓁、周文聿(2015):國民小學一至三年級識字診斷測驗。台北:心理。
岳修平(譯)(1998):教學心理學: 學習的認知基礎(E. D. Gagnè, C. W. Yekovich, & F. R. Yekovich著:The cognitive psychology of school learning)。台北:遠流。(原著出版於1985)
林俊銘(1999):閱讀障礙。特殊教育季刊,30,17-25。
林素貞(2000):國小中文讀寫障礙學生國語課學習行為特徵檢核表之編製報告。特殊教育研究學刊,80,97-110。
林淑玟(2007):整合殘障概念模式之初探。特殊教育與復健學報,17,21-46。
林淑玟、羅錦興(2011):重度與極重度肢體障礙者輔助科技長期介入成果研究。教育心理學報,43(1),97-126。
林淑玟、羅錦興、陳世中、謝明哲、吳崇民、黃燦珣(2008):跨專業輔助科技整合服務團隊之運作。臺南市:國立臺南大學特殊教育中心。
林堤塘、張嘉文(2008):國際功能、障礙與健康分類系統(ICF) 的發展、應用及其對特殊教育的影響。特殊教育季刊,106,1-8。
柯華葳、詹益綾(2006):國民小學(二至六年級)閱讀理解篩選測驗。台北:教育部特殊教育小組。
洪瑞成(2009)。閱讀輔助科技工具箱建立之研究(未出版)。國立嘉義大學特殊教育學系碩士論文,嘉義。
洪瑞成、連盈捷、陳立青(2008):輔助科技在融合環境下之應用類型及應考量之因素。屏師特殊教育,16,38-48。
洪瑞成、劉晴雯、陳筱嵐(2018):輔助科技作為改善自閉症學生手寫問題策略作法之探討。特教園丁,34(1),11-20 。
洪榮照(2011):我國特殊教育師資培育之探討。載於洪榮照主編:特殊教育叢書(75-82頁)。臺中:國立臺中教育大學特殊教育中心。
洪榮照、林信香(2005):國小學習障礙學生自我概念及生活適應之研究。特殊教育與復健學報,14,55-84。
洪儷瑜(1995)。學習障礙者教育。台北:心理。
洪儷瑜、何淑玫(2010):「介入反應」在特殊教育的意義與運用。特殊教育季刊,115,1-13。
胡永崇(2002):學習障礙兒童社會情緒行為的發展及其輔導。特殊教育文集 (4),173-217。
胡永崇(2008):閱讀理解的教學評量方式。屏師特殊教育,16,1-9。
高宜芝、王欣宜(2005):當前我國融合教育實施成敗相關因素之探討.。載於國立臺中師範學院特殊教育中心主編:特殊教育教學與趨勢 (55-68頁) 。台中:國立臺中師範學院特殊教育中心。
張美華、簡瑞良(2006):新全方位課程設計的意義內涵與理論基礎。特殊教育文集,8,127-156。
張貽琇、孟瑛如, 、吳東光(2007):國小資源班教師對電腦化 IEP 系統使用滿意度之研究-以有愛無礙電腦化 IEP 系統為例。特殊教育學報,26,85-109。
教育部(2014):103年度特殊教育統計年報。台北:教育部。
教育部(2015):104年度特殊教育統計年報。台北:教育部。
教育部(2016):105年度特殊教育統計年報。台北:教育部。
教育部(2017):106年度特殊教育統計年報。台北:教育部。
教育部(2018):107年度特殊教育統計年報。台北:教育部。
教育部(2019):108年度特殊教育統計年報。台北:教育部。
教育部(2019):十二年國民基本教育課程綱要─議題融入說明手冊。台北:教育部。
陳正昌、程炳林、陳新豐、劉子鍵(2011):多變量分析方法:統計軟體應用。台北:五南。
陳明聰(2000):融合式教育安置下課程的發展。特殊教育季刊,76,17-23。
陳明聰(2009):美國賓州學校教育系統中輔助科技支援系統的運作模式─以Allegheny County為例。特殊教育季刊,112,1-7。
陳明聰(2016):輔助科技在融合環境下之應用類型及應考量之因素摘要。雲嘉特教,24,1-8。
陳明聰、吳亭芳(2005):談以學生學習為中心的輔助科技服務。雲嘉特教,1,41-53。
陳明聰、洪瑞成(2007):各縣市政府教育輔助器材法規之探究。載於中華民國特殊教育學會主編:特殊教育年刊︰特殊教育的資源與支援(333-348頁)。台北:中華民國特殊教育學會。
陳明聰、賴翠媛(2003):專題式輔助性科技在職進修方案及其實施成效。東臺灣特殊教育學報,7,19-34。
陳明蕾、王學誠、柯華葳(2009):中文語意空間建置及心理效度驗證: 以潛在語意分析技術為基礎。中華心理學刊,51(4),415-435。
陳思涵、陳明聰(2016):談美國教育系統中的輔助科技。輔具之友,39,1-5。
傅秀媚(2001):融合教育的實施模式研究。載於國立臺中師範學院特殊教育中心主編:特殊教育論文輯 (141-156頁)。 台中:國立臺中師範學院特殊教育中心。
曾元顯、林瑜一(2011):內容探勘技術在教育評鑑研究發展趨勢分析之應用。教育科學研究期刊,56(1),129-166。
曾瓊禛、洪儷瑜(2015):學習障礙學生社會情緒適應困難內涵初探。特殊教育季刊,137,9-19。
程欣儀、俞雨春、朱彥穎、王雅秋、王錦滿(2017):輔具與生活參與-學習輔具申請配置之問題與現況調查。身心障礙研究,15(4),235-250。
鈕文英(2010):特殊教育證據本位實務之建立、鑑識與運用。南屏特殊教育,1,1-24。
鈕文英(2015):擁抱個別差異的新典範:融合教育(第二版)。台北:心理。
黃己娥、王天苗(2007):迢迢學習路-一位學障學生的學習經驗。特殊教育研究學刊,32(3),111-132。
黃芳銘(2007):結構方程模式理論與應用(五版)。台北:五南書局。
黃瑋苓(2005): 國小融合教育班教師工作壓力與其因應策略之研究。身心障礙研究季刊,3(4),201-215。
楊志堅、蘇啟明、沈文娟(2006):學童早期口語理解能力之檢測。師大學報,51(1),213-232。
廖晨惠(2011):閱讀研究議題八:以LSA為基礎之電腦化閱讀認知測驗及AutoTutor建置。行政院國家科學委員會專題研究計畫成果報告(NSC 100-2420-H-142 -001 -MY3)。
廖晨惠、郭伯臣(2009):中文閱讀障礙兒童認知功能探討與研究:電腦化閱讀認知功能測驗。行政院國家科學委員會專題研究計畫成果報告(NSC 98-2410-H-142-001-MY2)。
劉嘉玲、吳芷寧、廖晨惠(2012):應用電腦化測驗於詞素覺識與中文閱讀之相關性探討。發表於全球華人計算機教育應用大會2012「電腦化認知診斷評量」工作坊。屏東。
蔡昆瀛(2000):融合教育理念的剖析與省思。國教新知,47(1),50-57。
蘇妍如,吳東光,孟瑛如(2007):應用決策樹於學習障礙鑑定之評估。資訊科技與應用期刊,2(2),93-107。

外文部分
Basham, J. D., Israel, M., Graden, J., Poth, R., & Winston, M. (2010). A comprehensive approach to RTI: Embedding universal design for learning and technology. Learning Disability Quarterly, 33(4), 243-255.
Bateman, B. (2007). Law and the conceptual foundation of special education practice. In Crockett, J. B., Gerber, M., Landrum, T. eds. Achieving the radical reform of special education: Essays in honor of James M. Kauffman, (pp. 95-114). New York: Lawrence Erlbaum Association.
Bender, W. N. (2004). Learning disabilities: Characteristics, identification, and teaching strategies (5th ed.). Boston: Pearson.
Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological methods & research, 16(1), 78-117.
Bernd, T., Van Der Pijl, D., & De Witte, L. (2009). Existing models and instruments for the selection of assistive technology in rehabilitation practice. Scandinavian Journal Of Occupational Therapy, 16(3), 146-158. https://doi.org/10.1080/11038120802449362
Bowser, G., & Reed, P. (1995). Education TECH Points for Assistive Technology Planning. Journal of Special Education Technology, 12(4), 325-38.
Bowser, G., Carl, D. F., Fonner, K., Foss, T. V., Korsten, J. E., Lalk, K., Larson, J. B., …Zabala, J. S. (2015). Quality Indicators for Assistive Technology: A Comprehensive Guide to Assistive Technology Services. Wakefield, MA: CAST.
Bryant, D. P., Bryant, B. R., & Raskind, M. H. (1998). Using assistive technology to enhance the skills of students with learning disabilities. Intervention in School and Clinic, 34(1), 53-58.
Chambers, A. C. (1997). Has technology been considered: A guide for IEP teams. Technology and Media Division (TAM). Reston, VA: Council for Exceptional Children.
Cook, A. M., & Polgar, J. M. (2012). Essentials of Assistive technologies). St. Louis, MO: Mosby.
Cornwall, A., & Bawden, H. N. (1992). Reading disabilities and aggression: A critical review. Journal of Learning Disabilities, 25(5), 281-288.
Desmond, D., Layton, N., Bentley, J., Boot, F. H., Borg, J., Dhungana, B. M., ... & Mavrou, K. (2018). Assistive technology and people: a position paper from the first global research, innovation and education on assistive technology (GREAT) summit. Disability and Rehabilitation: Assistive Technology, 13(5), 437-444.
Edyburn, D. (2005). Special Education Technology Networks of Practice. Journal of Special Education Technology, 20(3), 69–71. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=ofs&AN=507812774&lang=zh-tw&site=ehost-live
Edyburn, D. (2009). RTI and UDL interventions. Journal of Special Education Technology, 24(2), 46.
Edyburn, D. L. (2000). Assistive Techonlogy and Students with Mild Disabilities. Focus on Exceptional Children, 32(9), 1-24.
Edyburn, D. L. (2001). Models, theories, and frameworks: Contributions to understanding special education technology. Special Education Technology Practice, 4(2), 16-24.
Edyburn, D. L. (2003). Measuring assistive technology outcomes: Key concepts. Journal of Special Education Technology, 18(1), 53-55.
Edyburn, D. L. (2007). Technology‐enhanced reading performance: Defining a research agenda. Reading Research Quarterly, 42(1), 146-152.
Edyburn, D. L. (2013). Inclusive technologies: Tools for helping diverse learners achieve academic success. Bridgepoint Education, CA: San Diego.
Estrada-Hernández, N., & Stachowiak, J. R. (2010). Evaluating Systemic Assistive Technology Needs. In Handbook of Research on Human Cognition and Assistive Technology: Design, Accessibility and Transdisciplinary Perspectives (pp. 239-250). IGI Global.
Federici, S., & Scherer, M. (Eds.). (2018). Assistive technology assessment handbook Second Edition. Boca Raton: CRC Press.
Ferrando, P. J., Lorenzo-Seva, U., & Chico, E. (2009). A general factor-analytic procedure for assessing response bias in questionnaire measures. Structural Equation Modeling: A Multidisciplinary Journal, 16(2), 364-381.
Florian, L. 2008. Special or inclusive education: Future trends. British Journal of Special Education, 35(4), 202–208.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Fuchs, D., Fuchs, L. S., & Compton, D. L. (2012). Smart RTI: A next-generation approach to multilevel prevention. Exceptional children, 78(3), 263-279.
Fuhrer, M. J., Jutai, J. W., Scherer, M. J., & DeRuyter, F. (2003). A framework for the conceptual modelling of assistive technology device outcomes. Disability and rehabilitation, 25(22), 1243-1251.
Gierach, J. (2009). Assessing students’ needs for assistive technology (ASNAT 5th ed.) Retrieved from http://wati.org/content/supports/free/pdf/ASNAT5thEditionJun09. pdf
Haines, L., & Sanche, B. (2000). Assessment models and software support for assistive technology teams, Diagnostique, 25(3), 291-306.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.
Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, L. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 24(2), 106-121.
Hair, J., Ringle, C. and Sarstedt, M. (2011) PLS-SEM Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19, 139-151.
Hair, Joe & Sarstedt, Marko & Hopkins, Lucas & Kuppelwieser, Volker. (2014). Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool for Business Research. European Business Review, 26, 106-121. https://doi.org/10.1108/EBR-10-2013-0128.
Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565-580.
Henseler, J., Hubona, G., & Ray, P. A. (2015). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data System, 116, 2-20.
Hitchcock, C., Meyer, A., Rose, D., & Jackson, R. (2002). Providing New Access to the General Curriculum. TEACHING Exceptional Children, 35, 8-17. 10.1177/004005990203500201
Hollenweger, J. (2008). Cross-national comparisons of special education classification system. In L. Florian, M. McLaughlin, Eds. Disabilities classification in Education: Issues and perspectives, (pp. 11-30).Thousand Oaks, CA: SAGE.
Johnson, I. (2008). Does the oxford reading pen enhance reading accuracy and comprehension for students with reading difficulties in a classroom environment? an implementation trial. Kairaranga, 9(1), 36-43. Retrieved from https://search.proquest.com/docview/851225601?accountid=14228
King, T. W. (1999). Assistive technology: Essential human factors. Boston: Allyn & Bacon, pp. 67-86.
Krewer, J. (2007). Assistive Technology Implemented Through a Response to Intervention (RtI) Design A case study. Retrieve from: http://donjohnston.com/assistive-technology-implemented-through-a-response-to-intervention-rti-design/.
Lenker, J. A., & Paquet, V. L. (2004) A New Conceptual Model for Assistive Technology Outcomes Research and Practice, Assistive Technology, 16:1, 1-10, https://doi.org/ 10.1080/10400435.2004.10132069.
Lerner, J. (2006). Learning disabilities and related disorders: Characteristics and teaching strategies (10th ed.). Boston: Houghton Mifflin Company.
Lewis, R. B. (1993). Special education technology: class application. Wadsworth, CA: Belmont.
Majnemer A. (1998). Benefits of early intervention for children with developmental disabilities. Semin Pediatr Neurol, 5, 62–69.
Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A new framework for teacher knowledge. Teachers College Record 108 (6), 1017-1054.
Mittler, J. (2007). Assistive technology and IDEA. In C. Warger (Ed.), Technology integration: Providing access to the curriculum for students with disabilities. Arlington, VA: Technology and Media Division (TAM).
Morgan, P. L., Farkas, G., & Hibel, J. (2008). Matthew effects for whom?. Learning Disability Quarterly, 31(4), 187-198.
Mueller, J. L. (1998) Assistive Technology and Universal Design in the Workplace, Assistive Technology, 10(1), 37-43, https://doi.org/10.1080/10400435.1998.10131959.
Nagadeepa,C., Reddy, N. S. K., Balaji, N.,& Padmaja, V.(2013). Interactive character recognition technique for mobile based systems: an application for autistic people. International Journal of Advanced Computational Engineering and Networking, 1(9), 59-64.
National Association of State Directors of Special Education. (2006). Response to intervention: Policy considerations and implementation. Alexandria, VA: Author.
Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural equation modeling, 7(4), 557-595.
Polgar, J. M. (2006). Assistive technology as an enabler to occupation: what’s old is new again (Muriel Driver Lecture), Canadian Journal of Occupational Therapy, 73(4), 199–205.
Raskind, M. H., & Bryant, B. R. (2002). Functional Evaluation for Assistive Technology, FEAT: Examiner's Manual. Psycho-Educational Services.
Sarstedt, M., Henseler, J., & Ringle, C. M. (2011). Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. Measurement and research methods in international marketing, 22,195-218.
Scherer, M. (1998) Matching Person & Technology (MPT) Model Manual and Accompanying Assessments, Third Edition, Webster, NY: Institute for Matching Person & Technology, Inc.
Schulz R., Heckhausen J. 1996. A life-span model of successful aging. American Psychologist, 51, 702–714.
Simpson, R. L. (2005). Evidence-based practices and students with autism spectrum disorders. Focus on Autism and Other Developmental Disabilities, 20(3), 140-149
Smith, R. O. (2000). Measuring assistive technology outcomes in education. Diagnostique, 25(4), 273-290. doi:10.1177/073724770002500403
Steel E., Gelderblom G.J., de Witte L. (2010) Linking Instruments and Documenting Decisions in Service Delivery Guided by an ICF-Based Tool for Assistive Technology Selection. In: Miesenberger K., Klaus J., Zagler W., Karshmer A. (eds) Computers Helping People with Special Needs. ICCHP 2010. Lecture Notes in Computer Science, vol 6179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14097-6_86
Wile, D. (1996). Why doers do. Performance and Instruction, 35(2), 30-35.
Wojcik, B. W. (2011). Voices from the field: Issues and lessons from the QIAT listserv. Unpublished doctoral dissertation, Illinois State University, Normal, IL.
Wu, T. K., Huang, S. C., & Meng, Y. R. (2008). Evaluation of ANN and SVM Classifiers as Predictors to the Diagnosis of Students with Learning Disabilities, Expert Systems with Applications, 34(3), 1846–1856.
Wu, T. K., Huang, S. C., Meng, Y. R., Liang, W. Y., & Lin, Y. C. (2011). Rough Sets as a Knowledge Discovery and Classification Tool for the Diagnosis of Students with Learning Disabilities. International Journal of Computational Intelligence Systems, 4(1), 29-43.
Zabala, J. S. (2005). Ready, SETT, go! Getting started with the SETT framework. Closing the Gap, 23(6), 1-3.
Zumbo, B. D., & Zimmerman, D. W. (1993). Is the selection of statistical methods governed by level of measurement?. Canadian Psychology/Psychologie canadienne, 34(4), 390.

下載圖示
QR CODE