研究生: |
王育庭 Wang, Yu-Ting |
---|---|
論文名稱: |
高中生建構向量概念的系統繪圖法之研發及學習成效研究 The development of systematic drawing as an instructional practice of plane vector for senior high school students together with an evaluation of its learning effectiveness |
指導教授: |
譚克平
Tam, Hak-Ping 楊芳瑩 Yang, Fang-Ying |
口試委員: |
張鎮華
Chang, Zhen-Hua 楊芳瑩 Yang, Fang-Ying 譚克平 Tam, Ko-Ping |
口試日期: | 2021/07/12 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | APOS理論 、動手操作 、平面向量 |
英文關鍵詞: | APOS Theorem, Hands-on, Plane vectors |
研究方法: | 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100959 |
論文種類: | 學術論文 |
相關次數: | 點閱:164 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於向量 概念 對高中生是抽象的, 一般考生 在大 學 入考試中的表現也 不盡理想,因此研究者希望發展一套系統繪圖法幫助高中生建立平面向量的概念。研究者以 台北市某公立高中二年級為對象,APOS理論為引導, 設計系統繪圖法教材 並進行實驗教學。研發系統繪圖法的契機為,現高中課 綱將向量歸類在幾何別,並之分為平面與空間然而教科書編排方式仍以代數 表徵 居多,研究者認為對於初學而言應給予足夠的 實作繪圖 機會掌握向量的概念, 進而 可以發展出 將向量視為 一個 「物件 」的心智模式。 本研究 目的是想 探討這套系統繪圖法是否真的能夠幫助學生了解向量概念, 以及 心智結構的發展 層次是否 到達「物件」的階段 ,另 一個目的是想 比較使用 系統繪圖法與講述式教學的生在認知結構向量概念上習成效有何差異。
本研究採混合法,量化部分 是採用準實驗研究法,並 以研究者設計的 前、後測試卷進行雙因子變異數分析;質性部以訪談九位學生詳細了解兩組學生分別在 APO認知結構的品質上有何區別。研究果分析發現,實驗組學生 在接受系統繪圖法的教學 後對於向量 的大小 ,以 及向量同時考慮 方向 與大小 的 表現比對照組優異, 但是線性組 合問題上則對照優於實驗。在認 知結構 「過程 」的問題表現上 實驗組優於對照,但是認知結構 「動作 」和「物件 」 兩組學生則是沒有統計上的顯著差異。透過質性分析 ,本研究發現 實驗組學生 在接受系統繪圖法 後能形成較 健全 的「物件 」結構,對照組學生則是 傾向以計 算的方式回答問題, 解題能力較強但 對於向量 的「物件 」結構 比較薄弱 。
The concept of vector is rather abstract for most senior high school students. Based on publicly released data, it was observed that many examinees performed unsatisfactorily on vector problems in the College Entrance Examination. This observation motivated the present researcher to develop a novel approach to help students learn the concept of plane vectors. The presentations of learning materials in all current textbooks are algebraic oriented. The present researcher believes that it is more important to take advantage of the geometric aspect of vector and allow the beginning students many opportunities to grasp the concept of vector in more concrete way. Thus the main idea of the new teaching method is to engage students in a systematic way of drawing vectors according to the APOS theory of Dubinsky. It is hope that under this approach students can subsequently perceive vectors as mathematical objects. The purpose of this study is to evaluate the effectiveness of this systematic method of drawing vectors by comparing it with the traditional teaching method. In particular, we would like to assess if students in both groups can progress to the level of perceiving vectors as mathematical objects.
This study adopted the mixed methods approach as its research design. For the quantitative section of the study, a teaching experiment was implemented according to the quasi-experimental design. The data collected was analyzed by using a two-way analysis of covariance through SAS. As regards the qualitative section of the study, interviews were conducted on a total of nine students from both the experimental and the control group. The main focus of the interview is to clarify the differences in terms of the APO cognitive structure between the students in the two groups.
It was found that students who had learned the systematic method of drawing vectors performed better than the control group in items related to finding the length of vectors and also in items that involved both the direction and length of vectors. However, students in the control group performed better in items related to linear combinations of vectors. As regards the APO cognitive structure, the experimental group performed significantly better than the control group in items related to “process,” but were no different in items related to “action” and “object.” However, analysis of the interview data revealed that students in the experimental group portrayed a more solid perception of vectors as mathematical objects, while students in the control group were relatively weaker in this aspect.
王信翰(2014)。探討高中生平面向量概念學習情況與評量工具之研發。國立臺灣師範大學科學教育研究所碩士論文,台北市。
王智偉(2006)。高二學生向量概念融入複式評量的學習成效之研究。國立高雄師範大學數學教學碩士班碩士論文,高雄市。
左台益,李健恆(2018)。素養導向之數學教材設計與發展。教育科學研究期刊,63(4),29-58。
朱耀明(2011)。「動手做」的學習意涵分析-杜威的經驗學習觀點。生活科技教育月刊,44(2),32-41。
李永貞(2009)。高二學生在向量概念學習上的主要錯誤類型及其補救教學之研究。國立臺灣師範大學數學系在職進修碩士班學位論文,台北市。
李恒威,盛曉明(2006)。認知的具身化。科學學研究,24(2),184-190。
沈湘屏(2017)。高中生建構平面向量線性組合概念之個案研究。國立臺灣師範大學數學系碩士班碩士論文,台北市。
林進發(2001)。桃園地區高中學生向量內積之運算及應用錯誤類型之研究。國立高雄師範大學數學系碩士班論文,高雄市。
翁穎哲,譚克平(2008)。設計研究法簡介及其在教育研究的應用範例。科學教育月刊,(307),15-30。
陳怡君(2016)。淺談空間能力的性別差異與科學、科技、工程及數學類型的職業選擇。科學教育月刊,(392),47-55。
郭書賓(2020)。3D虛擬實驗對國中生理化學習成效與學習動機影響之研究-以電路學單元為例。淡江大學教育科技學系數位學習碩士學位在職進修班碩士論文,台北市。
張耀文(2013)。APOS教學對七年級學生學習線型函數概念之影響。國立臺灣師範大學數學系在職進修碩士班碩士論文,台北市。
劉麗穎,黃翔(2005)。美國數學教材中的”動手做”。數學教育學報,14(2),53-55。
Appoya, A., & Berezovski, T. (2013). Commonly identified students’ misconceptions. about vectors and vector operations. In S. Brown, G. Karakok, K. H. Roh, and M. Oehrtman (Eds.), Proceedings of the 16th Annual. Conference on Research in Undergraduate Mathematics Education , (Vol. 2, pp. 2-8). Denver, Colorado.
Arnon, I., Cottrill, J., Dubinsky, E., O. A., Roa-Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS Theory . New York, NY: Springer.
Barniol, P., & Zavala, G. (2014). Test of understanding of vectors: A reliable multiple-choice vector concept test. Physical Review Special Topics-Physics Education Research, 10(1), 1-14.
Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247-285.
Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of The Learning Sciences, 2(2), 141-178.
De Lima, R. N., & Tall, D. (2008). Procedural embodiment and magic in linear equations. Educational Studies in Mathematics, 67(1), 3-18.
Dubinsky, E. (1991). Constructive aspects of reflective abstraction in advanced mathematics. In L. P. Steffe(Ed.) Epistemological Foundations of Mathematical Experience (pp. 160-202). New York, NY: Springer.
Dubinsky, E., & Wilson, R. T. (2013). High school students’ understanding of the function concept. The Journal of Mathematical Behavior, 32(1), 83-101.
Lakoff, G., & Núñez, R. (2000). Where Mathematics Comes From (Vol. 6): New York: Basic Books.
Madden, J. (2001). Where mathematics comes from: How the embodied mind brings mathematics into being. Notices of The AMS, 48(10), 1182-1188.
Meel, D. E. (2003). Models and theories of mathematical understanding: Comparing Pirie and Kieren’s model of the growth of mathematical understanding and APOS theory. CBMS Issues in Mathematics Education, 12(2), 132-181.
Nguyen, N. L., & Meltzer, D. E. (2003). Initial understanding of vector concepts among students in introductory physics courses. American Journal of Physics, 71(6), 630-638.
Novak, J. D., Gowin, D. B., & Bob, G. D. (1984). Learning how to learn. New York, NY: Cambridge University press.
Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear Algebra and Its Applications, 432(8), 2112-2124.
Peters, M., Chisholm, P., & Laeng, B. (1995). Spatial ability, student gender, and academic performance. Journal of Engineering Education, 84(1), 69-73.
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1-36.
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599-604.
Weller, K., Arnon, I., & Dubinsky, E. (2011). Preservice teachers’ understandings of the relation between a fraction or integer and its decimal expansion: Strength and stability of belief. Canadian Journal of Science, Mathematics and Technology Education, 11(2), 129-159.
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636.