研究生: |
楊青育 Ching-Yu Yang |
---|---|
論文名稱: |
混合性互補問題和無窮維二階錐非光滑函數 Mixed complementarity problems and nonsmooth functions associated with infinite-dimensional second-order cones |
指導教授: |
陳界山
Chen, Jein-Shan |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 混合性互補問題 、半光滑 、收斂率 、希爾伯空間 、無窮維二階錐 、強半光滑 |
英文關鍵詞: | MCP, semismooth, convergence rate, Hilbert space, infinite-dimensional second-order cone, strong semismoothness |
論文種類: | 學術論文 |
相關次數: | 點閱:212 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中, 首先我們將範數從2 放寬到p (p > 1) 的廣義Fischer-Burmeister (GFB)函數應用在由Kanzow 等人發展的兩種解混合性互補問題的解法上。這兩種方法是將混合性互補問題視為一種帶條件的極小值問題或是非線性系統方程。同時我們也經由MCPLIB 問題庫中不同的p 值計算疊代次數與函數值的performance profiles 來探討改變p 值所帶來的影響與效能改善狀況。
接下來, 我們處理希爾伯空間(H) 中的互補問題。為此, 我們先介紹無窮維度二階錐 K 的向量值函數f^H(x)。詳細來說, 對任意 x 在 H 中, 引進x 的譜分解式。然後對任意實值函數 f : R -> R, 定義在 H 上相對應的向量值函數 f^H(x) 為由 x 在 H 中的譜分解值所生成。我們證明了由 f 引申的這個向量值函數 f^H(x) 具有連續、Lipschitz 連續、可微分、光滑與s-半光滑等性質。這些結果, 在設計與分析無窮維度上二階錐規劃和互補問題的解法上是非常有用的。
In this thesis, we first employ the generalized Fischer-Burmeister (GFB) function where the 2-norm in the Fischer-Burmeister function is relaxed to a general p-norm (p > 1) for the two methods which is proposed by Kanzow et al. to recast the mixed complementarity problem (MCP) as a constrained minimization problem and a nonlinear system of equations, we also investigate how much the improvement is by changing the parameter p as well as which method is influenced more when we do so, by the performance profiles of iterations and functions evaluations for the two methods with different p on MCPLIB collection.
Next, we deal with complementarity problems in Hilbert space. To this end, we introduce vector-valued function f^H(x) associated with the infinite-dimensional second order
cone K. More specifically, for any x ∈ H, a spectral decomposition is introduced, and for any function f : R → R, we define a corresponding vector-valued function f^H(x)
on Hilbert space H by applying f to the spectral values of the spectral decomposition of x ∈ H with respect to K. We show that this vector-valued function inherits from f
the properties of continuity, Lipschitz continuity, differentiability, smoothness, as well as s-semismoothness. These results are useful for designing and analyzing solutions methods for solving infinite-dimensional second-order cone programs and complementarity problems.
[1] S. C. Billups, Algorithms for complementarity problems and generalized equations, Ph.D. Thesis, Computer Sciences Department, University of Wisconsin, 1995.
[2] S. C. Billups, S. P. Dirkse and M. C. Soares, A comparison of algorithms for large scale mixed complementarity problems, Computational Optimization and
Applications, vol. 7, pp. 3-25, 1997.
[3] S. C. Billups, and M. C. Soares, QPCOMP: A quadratic programming based solver for mixed complementarity problems, Mathematical Programming, vol. 76, pp.
533-562, 1997.
[4] J.-S. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem, Journal of Global Optimization,
vol. 36, pp. 565-580, 2006.
[5] J.-S. Chen, On some NCP-functions based on the generalized Fischer-Burmeister function, Asia-Pacific Journal of Opertional Research, vol. 24, pp. 401-420, 2007.
[6] J.-S. Chen and S. Pan, A family of NCP-functions and a descent method for the nonlinear complementarity problem, Computational Optimization and Applications, vol. 40, pp. 389-404, 2008.
[7] J.-S. Chen, S. Pan and C.-Y. Yang, Numerical comparison of two effective methods for mixed complementarity problems, Journal of Computational and Applied Mathematics, vol. 234, pp. 667-683, 2010.
[8] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[9] R.W. Cottle, J.-S. Pang and R.-E. Stone, The Linear Complementarity Problem, Academic Press, New York, 1992.
[10] S. Dirkse, Robust solution of mixed complementarity problems, Ph.D. Thesis, Computer Sciences Department, University of Wisconsin, 1994.
[11] S. Dirkse and M. Ferris, MCPLIB: a collection of nonlinear mixed complementarity problems, Optimization Methods and Softwares, vol. 5, pp. 319-345, 1995.
[12] E.D. Dolan and J.J. More, Benchmarking optimization software with performance profiles, Mathematical Programming, vol. 91, pp. 201-213, 2002.
[13] F. Facchinei, and J-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II, Springer, New York, 2003.
[14] M. Ferris, C. Kanzow, and T. Munson, Feasible descent algorithms for mixed complementarity problems, Mathematical Programming, vol. 86, pp. 475-497, 1999.
[15] M. Ferris, and J-S. Pang, Engineering and economic applications of complementarity problems, SIAM Review, vol. 39, pp. 669-713, 1997.
[16] M. Ferris and K. Sinapiromsaran, Formulating and solving nonlinear programs as mixed complementarity problems, Optimization, volume 481 of Lecture Notes in
Economics and Mathematical Systems, edited by V. Nguyen, J. Strodiot, and P. Tossings, 2000.
[17] A. Fischer, Solution of the monotone complementarity problem with locally Lipschitzian functions, Mathematical Programming, vol. 76, pp. 513–532, 1997.
[18] L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton’s method, SIAM Journal on Numerical Analysis, vol. 23, pp. 707-716, 1986.
[19] P. T. Harker and J.-S. Pang, Finite dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms and applications,
Mathematical Programming, vol. 48, pp. 161-220, 1990.
[20] C. Kanzow, Strictly feasible equation-based methods for mixed complementarity problems, Numerische Mathematik, vol. 89, pp. 135-160, 2001.
[21] C. Kanzow, An inexact QP-based method for nonlinear complementarity problems, Numerische Mathematik, vol. 80, pp. 557-577, 1998.
[22] C. Kanzow and S. Petra, On a semismooth least squares formulation of mixed complementarity problems with gap reduction, Optimization Methods and Softwares, vol. 19, pp. 507-525, 2004.
[23] C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity problems, Computational Optimization and Applications, vol. 11, pp. 227-251, 1998.
[24] C. Kanzow and S. Petra, Projected filter trust region methods for a semismooth least squares formulation of mixed complementarity problems, Optimization Methods and Softwares, vol. 22, pp. 713-735, 2007.
[25] O. L. Mangasarian, Global methods for nonlinear complementarity problems, Mathematics of Operations Research, vol. 21, pp. 589-614, 1996.
[26] J.-S. Pang and S. A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complemantarity problems, Mathematics Programming, vol. 60, pp. 295-337, 1993.
[27] J.-S. Pang and L. Qi, Nonsmooth equations: motivation and algorithms, SIAM Journal on Optimization, vol. 3, pp. 443-465, 1993.
[28] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Mathematics of Operations Research, vol. 18, pp. 227-244, 1993.
[29] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Mathematical Programming, vol. 58, pp. 353-367, 1993.
[30] L. Qi, C-differentiability, C-differential operators and generalized Newton methods, AMR 96/5, Applied Mathematics Report, University of New South Wales, Sydney,
1996.
[31] D. Sun and L. Qi, On NCP-functions., Computational Optimization and Applications, vol. 13, pp. 201-230, 1999.
[32] E. D. Andersen, C. Roos, and T. Terlaky, On implementing a primal-dual interior-point method for conic quadratic optimization, Mathematical Programming,
vol. 95, pp. 249–277, 2003.
[33] J-S. Chen, Two classes of merit functions for second-order cone complementarity problem, Mathematical Methods of Operations Research, vol. 64, pp. 495–519, 2006.
[34] J.-S. Chen and P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Mathematical Programming, vol.
104, pp. 293–327, 2005.
[35] J.-S. Chen, X. Chen, and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cones, Mathematical Programming, vol. 101, pp.
95–117, 2004.
[36] Y. Chiang, S-H. Pan and J-S. Chen, A merit function method for infinite-dimensional SOCCPs, submitted manuscript, 2009.
[37] X.-D. Chen, D. Sun, and J. Sun, Complementarity functions and numerical experiments for second-order cone complementarity problems, Computational Optimization
and Applications, vol. 25, pp. 39–56, 2003.
[38] X. Chen, Z. Nashed and L. Qi, Smoothing method and semismooth methods for nondifferentiable operator equations, SIAM Journal on Numerical Analysis, Vol 38,
pp. 1200–1216, 2000.
[39] U. Faraut and A. Kor´anyi, Analysis on symmetric cones, Oxford Mathematical Monographs Oxford University Press, New York, 1994.
[40] L. Faybusovich and T. Tsuchiya, Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank, Mathematical Programming, vol. 97, pp. 471–493, 2003.
[41] M. Fukushima, Z-Q. Luo, and P. Tseng, Smoothing functions for second-order cone complementarity problems, SIAM Journal on Optimization, vol. 12, pp. 436–460,
2002.
[42] S. Hayashi, N. Yamashita, and M. Fukushima, A combined smoothing and regularization method for monotone second-order cone complementarity problems, SIAM Journal of Optimization, vol. 15, pp. 593–615, 2005.
[43] C. Kanzow, I. Ferenczi and M. Fukushima, On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity, SIAM Journal on Optimization, vol. 20, pp. 297–320, 2009.
[44] R. Mifflin, Semismooth and semiconvex function in constrained optimization, SIAM Journal on Control and Optimization, vol. 15 pp. 959–972, 1977.
[45] R. D. C. Monteiro and T. Tsuchiya, Polynomial convergence of primal-dual algorithms for the second-order cone programs based on the MZ-family of directions,
Mathematical Programming, vol. 88, pp. 61–83, 2000.
[46] S.-H. Pan and J.-S. Chen, A damped Gauss-Newton method for the second-order cone complementarity problem, Applied Mathematics and Optimization, vol.59, pp. 293–318, 2009.
[47] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
[48] A. Shapiro, On concepts of directional differentiablity, Journal of Optimization Theory and Applications, vol. 66, pp. 477–487, 1990.
[49] T. Tsuchiya, A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming, Optimization Methods and
Software, vol. 11, pp. 141–182, 1999.
[50] A. Yoshise, Interior point trajectories and a homogenous model for nonlinear complementarity problems over symmetric cones, SIAM Journal on Optimization, vol. 17,
pp. 1129–1153, 2006.
[51] J. Mor´e and D.C. Sorensen, Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, vol. 4, pp. 553–572, 1983.
[52] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1995.
[53] C.-Y. Yang, Y.-L. Chang and J.-S. Chen, Analysis of nonsmooth vector-valued functions associated with infinite-dimensional second-order cones, submitted.