簡易檢索 / 詳目顯示

研究生: 鍾世勳
論文名稱: 某些馬可夫數的唯一性
The Uniqueness of Some Markoff Numbers
指導教授: 洪有情
Hung, Yu-Ching
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 14
中文關鍵詞: 馬可夫方程馬可夫數丟番圖方程
英文關鍵詞: Markoff Equation, Markoff Number, Diophantine Equation
論文種類: 學術論文
相關次數: 點閱:151下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於此篇論文中, 我們將用一些數論上同餘的理論去證明:
    設(a,b,c)與(a',b',c)皆為馬可夫方程式的正整數解, 且a,a'大於等於(k+1)/3,其中k是一個正奇數. 若c滿足3c-2或3c+2=kp^n,則馬可夫猜想是成立的.

    1.Introduction 1 2.Preliminary 3 3.Main Theorem 6 Reference 10

    [1] A.A Markoff, Sur les forme quadratiques binaires indéfinies. I, Math. Ann. 15 (1879), 381-409.
    [2] A.A Markoff, Sur les forme quadratiques binaires indéfinies. II, Math. Ann. 17 (1880), 379-399.
    [3] A. Baragar, On the unicity conjecture for Markoff numbers, Canad. Math. Bull. 39 (1996), no. 1, 3-9.
    [4] G. Frobenius, Über die Markoffschen Zhalen, Press. Akad. Wiss. Sitzungsberichte, 1913, 458-487; Ges. Abh. Vol.III, Springer-Verlag,Berlin, 1968, pp. 598-627.
    [5] J. O. Button, Markoff numbers, principal ideals and continued fraction expansions, Journal of Number Theory 87 (2001), no. 1, 77-95
    [6] J. O. Button, The uniqueness of the prime Markoff numbers, J. London Math. Soc. (2) 58 (1998), no. 1, 9-17.
    [7] J.W.S Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathem-Atics and Mathematical Physics, 45, Cambridge University Press, New York (1957).
    [8] N. J. A. Sloane, Sequence A00259 in “The On-Line Encyclopedia of Integer Sequences”.
    [9] M. L. Lang and S. P. Tan, A simple proof of Markoff conjecture for prime powers, preprint, arXiv: math.NT/0508443.
    [10] P. Schmutz, Syotles of arithmetic surfaces and the Markoff spectrum, Math. Ann. 305 (1996), no. 1, 191-203.
    [11] Y. Zhang, Congruence and uniquencess of certaion Markoff numbers, preprint, arXiv: math. no. NT/0612620 (version 2), (2006)
    [12] 沈雅引, On the Solutions of Certain Markoff Numbers, 國立臺灣師範大學數學系碩士論文 (2007)
    [13] 林志穎, On the Diophantine Equations x^2+y^2+z^2=kxyz, 國立臺灣師範大學數學系碩士論文 (2007)

    下載圖示
    QR CODE