簡易檢索 / 詳目顯示

研究生: 姚正容
Yao, Cheng-Jung
論文名稱: 北部某校大學生對於反毒機器人教材之使用及衝擊成效評價
Evaluation of the usability and effectiveness of anti-drug robot learning materials among college students in a northern university
指導教授: 郭鐘隆
Guo, Jong-Long
口試委員: 黃久美
Huang, Chiu-Mieh
呂莉婷
Lu, Li-Ting
郭鐘隆
Guo, Jong-Long
口試日期: 2023/06/19
學位類別: 碩士
Master
系所名稱: 健康促進與衛生教育學系健康促進與衛生教育碩士在職專班
Department of Health Promotion and Health Education_Continuing Education Master's Program of Health Promotion and Health Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 73
中文關鍵詞: 人工智慧機器人藥物濫用大學生計畫行為理論
英文關鍵詞: Artificial intelligence, robot, drug abuse, university students, Theory of planned behavior
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301340
論文種類: 學術論文
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是以無藥物濫用經驗之大學生為對象,以計畫行為理論為基礎,運用反毒機器人教材探討大學生在藥物濫用的介入提升學生對於藥物濫用基本識能及拒絕技能成效與大學生對科技產品反毒機器人的使用評價。
    本研究共招募大學一至四年級140位學生為研究對象,有效樣本114位學生,實驗組學生接受反毒機器人教材介入,介入時間為5節課,共計250分鐘,對照組學生接受傳統講座式的教學課程,介入時間為1節課,共計50分鐘,二組學生在介入課程前進行前測問卷,於課程教材介入後給予後測問卷。統計方法使用SPSS for Windows version 23.0 進行分析,採用描述性統計、配對 t 檢定、廣義估計方程式及一般多元迴歸分析檢定介入前後之變化成效。
    研究顯示以反毒機器人教材介入藥物濫用教學之學生在基本識能有顯著進步,並且大學生對於使用反毒機器人之態度、主觀規範、知覺行為控制及行為意圖使用評價皆顯著。大學生對於反毒機器人的使用經驗及涉入程度均獲得較高的回饋,尤其是對於已曾經使用過教育機器人的大學生來說,反毒機器人的使用評價前後測也有顯著。
    結果顯示本研究工具反毒機器人教材可應用於實際情形,未來可將此工具擴及不僅是大學生的使用,建議可融入校園藥物濫用教學提升學生相關知識與技能。

    The purpose of this study is to target university students without a history of drug abuse and to utilize the Theory of Planned Behavior as a basis. The study aims to examine the effectiveness of intervention using antidrug robot teaching materials in enhancing students' basic knowledge and refusal skills regarding drug abuse. Additionally, the study aims to evaluate the learning outcomes of university students in relation to the antidrug robot technology.
    A total of 140 university students from grades one to four were recruited as participants for this study, 114 students considered as valid samples. The experimental group received intervention using antidrug robot teaching materials for a total of 5 sessions, lasting 250 minutes. The control group received a traditional lecture-style teaching course for 1 session, lasting 50 minutes. Both groups completed pretest questionnaires before the intervention and post-test questionnaires after the intervention. Statistical analysis was performed using SPSS for Windows version 23.0, employing descriptive statistics, paired-t tests, generalized estimating equations, and multiple regression analysis to examine the changes in effectiveness before and after the intervention.
    Research shows that students who were exposed to anti-drug robot instructional materials demonstrated significant improvement in their basic literacy. Additionally, college students exhibited significant changes in attitude, subjective norms, perceived behavioral control, and behavioral intentions towards using anti-drug robots. The feedback received from college students regarding their experience and involvement with the anti-drug robots was overwhelmingly positive. This was especially true for those who had prior experience using educational robots, as their evaluation of the anti-drug robots' usage showed significant improvements in pre- and post-tests.
    The results indicate that the research tool, antidrug robot teaching materials, is applicable in practical settings. In the future, it can be extended beyond the use with university students. It is recommended to integrate this tool into campus drug abuse education to improve students' knowledge and skills in this area.

    第一章 緒論 1 第一節 研究動機與重要性 1 第二節 研究目的 4 第三節 研究問題 4 第四節 名詞定義 5 第二章 文獻探討 7 第一節 大學生的藥物濫用現況及其危害 7 第二節 科技與反毒相關研究 11 第三節 人工智慧機器人之教育應用 15 第四節 計劃行為理論應用於介入之研究 19 第三章 研究方法 23 第一節 研究架構 23 第二節 研究設計 24 第三節 研究對象 25 第四節 研究工具 26 第五節 反毒機器人衛教課程設計 31 第六節 研究步驟與流程 35 第七節 資料處理 38 第四章 研究結果 39 第一節 社會人口學資料分析 39 第二節 實驗組科技產品變項分析 42 第三節 反毒機器人教材介入成效分析 45 第四節 反毒機器人教材使用評價分析 48 第五節 大學生使用反毒機器人教材行為意圖分析 54 第五章 結論與建議 56 第一節 討論 56 第二節 研究限制 60 第三節 結論 60 第四節 建議 61 參考文獻 65

    一、中文部分
    王美智. (2020). 紙本與AR桌遊運用於反毒教學成效之探討:以某市高中職生為例. 國立臺灣師範大學, Available from Airiti AiritiLibrary database. (2020年)

    古志銘, 尚憶薇, & 麥毅廷. (2021). 結合計畫行為理論與科技接受模型探討大學生觀看網路運動影片與運動行為之關係-以廣東嶺南師範學生為例. [Identifying the Relationship between Watching Online Fitness Videos and Exercise Behavior from Lingnan Normal University Students' Perspectives: Integrating Theory of Planned Behavior and Technology Acceptance Model]. 國立臺灣體育運動大學學報, 10(2), 43-68. doi:10.53106/2226535x2021061002003

    沈秋宏. (2021). 教育機器人在未來教育中的應用與挑戰. 學校行政(136), 137-163.
    林淑君, 郭文正, & 管昱翔. (2021). 台灣青少年藥物濫用研究之文獻回顧. [Review of studies on adolescent drug abuse in Taiwan]. 台灣公共衛生雜誌, 40(2), 133-150. doi:10.6288/tjph.202104_40(2).109128

    林群, & 黃名琪. (2020). 青少年藥物濫用. [Substance Use Disorder in Adolescents]. 台灣醫學, 24(4), 427-433. doi:10.6320/fjm.202007_24(4).0010
    林瑩. (2022). 藝術介入社會教育-以國立臺灣美術館「愛藝反毒」專案為例. [Art as Social Intervention-A Case Study of "Love Art, No Drug" Project of the National Taiwan Museum of Fine Arts]. 商業設計學報(25), 156-173.

    翁瑄圻. (2020). 毒品施用者與大學生意志力、刺激尋求與低自我控制之比較研究. [A Comparative Study of University Students and Narcotic Drug Users in Willpower, Sensation Seeking, and Low Self-control]. 藥物濫用防治, 5(3), 35-57. doi:10.6645/jsar.202009_5(3).2

    高孟君. (2020). 遊戲式學習應用之實證研究. 2020 健康管理學術研討會-後疫情時期的新常態與新思維論文集 (摘要).

    張盈潔, 王詩文, & 呂莉婷. (2021). 應用解構式計畫行為理論探討高中學生對 3D 虛擬實境反毒課程使用意圖之質性研究. 教育科學研究期刊, 66(4), 133-165.

    張景媛. (1991). 大學生認知風格, 動機與自我調整因素, 后設認知與學業成績關係之研究. 教育心理學報(24), 145-161.

    張瑜真, 張鳳琴, 李景美, 李建明, & 蔡靜君. (2016). 某科技大學網路多媒體教材藥物濫用預防介入研究. 學校衛生(68), 1-24.

    莊宇慧, 陳怡婷, & 郭倩琳. (2021). 聊天機器人於臨床護理教育的設計與運用. [The Design and Application of a Chatbot in Clinical Nursing Education]. 護理雜誌, 68(6), 19-24. doi:10.6224/jn.202112_68(6).04

    陳志哲, 廖容瑜, 張萩琴, 黃久美, & 郭鐘隆. (2016). 應用理論建構以3D虛擬實境為特色之教育介入對高中職濫用愷他命學生的成效. [The Intervention Effectiveness of 3D Virtual Reality Animation on Senior High School Students with Ketamine Use]. 數位學習科技期刊, 8(3), 51-69.

    馮齡儀, 阮清陽, & 李志恒. (2020). 高雄市在地化藥物濫用資料分析研究. [Analysis of the site-specific data of drug abuse in Kaohsiung city]. 藥物濫用防治, 5(2), 1-23. doi:10.6645/jsar.202006_5(2).1

    楊士隆, 吳志揚, & 李宗憲. (2010). 臺灣青少年藥物濫用防治政策之評析. [An Evaluation of the Policy on Juvenile Drug Abuse Prevention in Taiwan]. 青少年犯罪防治研究期刊, 2(2), 1-20. doi:10.29751/jrdp.201012.0001

    葉承峰, & 楊晰勛. (2021). 運用虛擬實境與數位遊戲學習於國小學生的鄉土文化教學: 以學習成效和鄉土認同觀點之實證研究. 教育傳播與科技研究(126), 1-19.

    劉忠峰, 翁明正, 吳欽和, & 郭光明. (2011). 以科技接受模式3探討網路大學系統使用意向之研究. [Exploring the Acceptance of Cyber University Use Based on Technology Acceptance Model 3]. Electronic Commerce Studies, 9(4), 407-432. doi:10.29767/ecs.201112.0002

    蔡依倩. (2020). AI時代師生均應具備核心素養. 臺灣教育評論月刊, 9(1), 80-82.

    二、英文部分
    Ajzen, I. (1980). Understanding attitudes and predictiing social behavior. Englewood cliffs.

    Arria, A. M., Caldeira, K. M., Allen, H. K., Bugbee, B. A., Vincent, K. B., & O’Grady, K. E. (2017). Prevalence and incidence of drug use among college students: An 8-year longitudinal analysis. The American journal of drug and alcohol abuse, 43(6), 711-718.

    Arria, A. M., Caldeira, K. M., Vincent, K. B., O'Grady, K. E., Cimini, M. D., Geisner, I. M., . . . Larimer, M. E. (2017). Do college students improve their grades by using prescription stimulants nonmedically? Addictive Behaviors, 65, 245-249.

    Banaeian, H., & Gilanlioglu, I. (2021). Influence of the NAO robot as a teaching assistant on university students’ vocabulary learning and attitudes. Australasian Journal of Educational Technology, 37(3), 71-87.

    Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3), 114-123.

    Blackwell, R., DSouza, C., Taghian, M., Miniard, P., & Engel, J. (2006). Consumer behaviour: an Asia Pacific approach: Deakin University.

    Botvin, G. J., & Griffin, K. W. (2007). School-based programmes to prevent alcohol, tobacco and other drug use. International review of psychiatry, 19(6), 607-615.

    Caci, B., D’Amico, A., & Chiazzese, G. (2013). Robotics and virtual worlds: An experiential learning lab. Paper presented at the Biologically Inspired Cognitive Architectures 2012: Proceedings of the Third Annual Meeting of the BICA Society.

    El-Sawy, H., Abdel Hay, M., & Badawy, A. (2010). Gender differences in risks and pattern of drug abuse in Egypt. Egypt J Neurol Psychiat Neurosurg, 47(1), 413-418.

    Fording, R. C. (2007). Deciding to Discipline: A Multi-Method Study of Race, Choice, and Punishment at the Frontlines of Welfare Reform.

    Gallucci, A., Martin, R., Beaujean, A., & Usdan, S. (2015). An examination of the misuse of prescription stimulants among college students using the theory of planned behavior. Psychology, Health & Medicine, 20(2), 217-226.

    Hassan, A. N., Le Foll, B., Imtiaz, S., & Rehm, J. (2017). The effect of post-traumatic stress disorder on the risk of developing prescription opioid use disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions III. Drug and alcohol dependence, 179, 260-266.

    Henkemans, O. A. B., Bierman, B. P., Janssen, J., Looije, R., Neerincx, M. A., van Dooren, M. M., . . . Huisman, S. D. (2017). Design and evaluation of a personal robot playing a self-management education game with children with diabetes type 1. International Journal of Human-Computer Studies, 106, 63-76.

    Huang, C.-M., Chang, L.-C., Wang, M.-C., Sung, C.-H., Lin, F.-H., & Guo, J.-L. (2022). Impact of Two Types of Board Games on Drug-Use Prevention in Adolescents at Senior High Schools. Games for health journal, 11(4), 242-251.

    Huang, S.-F., Zheng, W.-L., Liao, J.-Y., Huang, C.-M., Lin, T.-Y., & Guo, J.-L. (2018). The effectiveness of a theory-based drama intervention in preventing illegal drug use among students aged 14–15 years in Taiwan. Health Education Journal, 77(4), 470-481.

    Huang, S. (2021). Design and Development of Educational Robot Teaching Resources Using Artificial Intelligence Technology. International Journal of Emerging Technologies in Learning, 15(5).

    Jalilian, F., KARAMI, M. B., Ahmadpanah, M., Ataee, M., AHMADI, J. T., Eslami, A. A., & MIRZAEI, A. M. (2015). Socio-demographic characteristics associated with cigarettes smoking, drug abuse and alcohol drinking among male medical university students in Iran.

    Jalilian, F., Mirzaei-Alavijeh, M., Ahmadpanah, M., Mostafaei, S., Kargar, M., Pirouzeh, R., . . . Brand, S. (2020). Extension of the Theory of Planned Behavior (TPB) to Predict Patterns of Marijuana Use among Young Iranian Adults. International Journal of Environmental Research and Public Health, 17(6), 1981. Retrieved from https://www.mdpi.com/1660-4601/17/6/1981

    Judson, R., & Langdon, S. W. (2009). Illicit use of prescription stimulants among college students: Prescription status, motives, theory of planned behaviour, knowledge and self-diagnostic tendencies. Psychology, Health & Medicine, 14(1), 97-104. doi:10.1080/13548500802126723

    Kaloyanides, K. B., McCabe, S. E., Cranford, J. A., & Teter, C. J. (2007). Prevalence of illicit use and abuse of prescription stimulants, alcohol, and other drugs among college students: relationship with age at initiation of prescription stimulants. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 27(5), 666-674.

    Kung, P.-J., & Chen, C.-M. (2022). Usability of mobile applications: a concept analysis in health promotion. Taiwan Gong Gong Wei Sheng Za Zhi, 41(2), 142-155.

    Liao, J.-Y., Huang, C.-M., & Guo, J.-L. (2015). A flash-based animation program of illicit drug prevention for high-risk adolescents: A flash-based animation program of illicit drug prevention. Paper presented at the 2015 International Conference on Learning and Teaching in Computing and Engineering.

    Lin, H.-C. K., Lin, Y.-H., Wang, T.-H., Su, L.-K., & Huang, Y.-M. (2020). Effects of incorporating ar into a board game on learning outcomes and emotions in health education. Electronics, 9(11), 1752.

    Lin, L.-C., Huang, C.-M., Hsu, H.-P., Liao, J.-Y., Lin, C.-Y., & Guo, J.-L. (2021). Integrating health literacy into a theory-based drug-use prevention program: a quasi-experimental study among junior high students in Taiwan. BMC public health, 21, 1-11.

    Liu, Y.-C., Yen, L.-C., Liaw, F.-Y., Lin, M.-H., Chiang, S.-H., Lin, F.-G., . . . Chiu, Y.-L. (2021). Gender Differences in the Extended Theory of Planned Behaviour on Smoking Cessation Intention in Young Soldiers. International Journal of Environmental Research and Public Health, 18(15), 7834. Retrieved from https://www.mdpi.com/1660-4601/18/15/7834

    Maloney, E. (2007). What Web 2.0 can teach us about learning. Chronicle of higher education, 53(18), B26.

    Mirzaei Alavijeh, M., Jalilian, F., Zinat Motlagh, F., Mazloomy Mahmodabad, S., Zolghadr, R., & Hatamzadeh, N. (2014). Effectiveness of drug abuse preventative intervention among Iranian Medical College Students based on the theory of planned behavior. Health Education and Health Promotion, 2(1), 41-52.

    Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Journal of Educational Technology & Society, 12(3), 150-162.

    Reich-Stiebert, N., Eyssel, F., & Hohnemann, C. (2020). Exploring university students’ preferences for educational robot design by means of a user-centered design approach. International Journal of Social Robotics, 12, 227-237.

    Severance, C., Hardin, J., & Whyte, A. (2008). The coming functionality mash-up in Personal Learning Environments. Interactive Learning Environments, 16(1), 47-62.

    Soong, R., Pautler, B. G., Moser, A., Jenne, A., Lysak, D. H., Adamo, A., & Simpson, A. J. (2020). CASE (computer-assisted structure elucidation) study for an undergraduate organic chemistry class. In: ACS Publications.

    Starčič, A. I., & Vukan, M. (2019). Teachers' perception of data-driven school ecosystem and data analytics. Paper presented at the Proceedings of the 10th International Conference on E-Education, E-Business, E-Management and E-Learning.

    Tawafak, R. M., Malik, S. I., & Alfarsi, G. (2020). Development of framework from adapted TAM with MOOC platform for continuity intention. Development, 29(1), 1681-1691.

    Tough, A. (2002). The iceberg of informal adult learning. New Approaches to Lifelong Learning (NALL) working Paper, 49.

    Tung, F.-C., Chang, S.-C., & Chou, C.-M. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. International Journal of Medical Informatics, 77(5), 324-335. doi:https://doi.org/10.1016/j.ijmedinf.2007.06.006

    Yang, D., Oh, E.-S., & Wang, Y. (2020). Hybrid physical education teaching and curriculum design based on a voice interactive artificial intelligence educational robot. Sustainability, 12(19), 8000.

    Zaichkowsky, J. L. (1994). The Personal Involvement Inventory: Reduction, Revision, and Application to Advertising. Journal of Advertising, 23(4), 59-70. doi:10.1080/00913367.1943.10673459

    Zhao, X., White, K. M., & McD Young, R. (2019). A TPB-based smoking intervention among Chinese high school students. Substance use & misuse, 54(3), 459-472.

    無法下載圖示 電子全文延後公開
    2027/08/01
    QR CODE