簡易檢索 / 詳目顯示

研究生: 王安蘭
論文名稱: 一個重構高中生機率概念的行動研究
指導教授: 金鈐
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 311
中文關鍵詞: 直觀直觀法則直觀教學概念改變機率迷思概念行動研究
論文種類: 學術論文
相關次數: 點閱:234下載:95
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過行動研究法,調查個人所任教之三個社會組班級高三學生的原生機率概念及其影響,並實施試驗性直觀教學。本研究共分為兩階段,持續一個學年。第一階段為全班教學,教學策略包括利用類推比較、認知衝突和引入科學性知識來幫助學生察覺並驗證原生直觀,同時,運用直觀法則和引動後設認知。研究結果顯示,直觀迷思比例有降低的趨勢,學生在認識直觀法則之後,已經學會驗證自己的原生直觀,但也發現有部分學生因教學介入而否定直觀的意義與價值。
    為了解決第一階段所遭遇的問題,在第二階段中,調整原來的教學策略,加入全班討論的活動。全班討論教學對大部分的學生有正面的影響,但是有少數學生仍受制於直觀的強制性,而感到疑惑並堅持其原生的想法,因此,進行了後半段的焦點小組晤談教學。這階段的研究結果顯示,學生對許多機率問題的答對率提高,大部分學生已能清楚表達自己所寫數學式的意義,更有些個案學生,能比較不同機率問題間的差異,同時,也增加了數學思考的信心。
    經過兩階段(包含三循環)研究的觀察發現,有些學生雖然能察覺直觀的迷思,卻又無法抗拒或克服直觀迷思;有些學生於修正原先的直觀迷思之後,經過一段時間,卻又再次折返至原有的迷思,或在不熟悉的情境下,又再度使用原生直觀。這些觀察表明,直觀的特性不但會影響學生的機率概念學習,而且,原始直觀不可能消失,即使經過相當程度的教學介入,它仍會一直潛在地影響學生的機率思維。令人振奮的是,有少數學生,不但察覺而且能修正自己的原生直觀迷思,更進一步將其轉換成科學性的二階直觀;有些學生,甚至提出「修正直觀」的看法。這些學生的表現,證實了Fischbein(1987) 和Resnick(1999)“直觀是可以學習的,它是可以經由教學介入而改變”的教學猜測。
    面對直觀的兩種極端面貌,為避免直觀迷思的影響和妨礙抽象思維的發展,教學時應直觀與邏輯並重,如能正確地運用直觀,將有助於學生對抽象概念的瞭解。

    Using action research methodology, three classes of students taught by the author were investigated focusing on their primitive/intuitive probabilistic conceptions and its influence. The study consists of 2 stages with 3 cycles, lasting for one academic year. In the first stage, a whole class teaching strategy was used, including analogical comparison, cognitive conflict, and introducing scientific knowledge to help the students become conscious of and test on their primitive intuitions, and then the Intuitive Rules and meta-cognitive arousal were activated. The initial results showed that students’ intuitive misconceptions were significantly reduced however for some students their primary intuitions were still active and refuted to accept the value of teaching intervention.
    To resolve these problems, in the second stage, the author introduced several formats of classroom discussion and focus groups investigation. Although this exploratory teaching had a positive influence on most students, and yet few students were still interfered by the coerciveness of intuition, and felt confused holding firmly their primary thoughts. The results showed that the percentage of students’ correct answers were increased, they were also more able to explain what they wrote, and a few students could even make the underlying differences between varied probabilistic questions and also get more confidence in the process of probabilistic thinking.
    Based on the results of this 2-stage/3-cycle study, for some students, whilst being able to grasp the intuitive misconceptions, they were still unable to resist or conquer the nature of mathematical intuition. After having successfully corrected the original intuitive misconceptions, they either returned to the primitive misconceptions or reverted to their primary intuition when they encountered unfamiliar questions. These evidences seem to suggest that the unique features of intuition influence not only student present learning of probabilistic concepts but also their future learning of the concepts. In other words, those primitive intuitions never completely disappear they exist a considerable period after learning it. What the most encouraging for the author is that several students were not only able to amend their primitive misconceptions, but also able to go a step further and transform this into scientific secondary intuition even modifying their views about primary and secondary intuition. This corroborates with the teaching hypotheses of “Primary intuition can be learned, and through teaching can be intervened and corrected” (Fischbein, 1987; Resnick, 1999).
    In order to cope with students’ intuitive misconceptions in teaching, teachers should carefully integrate those students’ primitive probabilistic intuitions with mathematical logic.

    目 次 中文摘要 目次....................... . ..Ι 附錄目次..................... ...Ⅲ 圖目次...................... ...Ⅴ 表目次....................... ..Ⅵ 第一章 緒論……………………………………………………………1 第一節 研究背景和動機…………………………………………….1 第二節 研究問題和研究目的……………………………………..10 第二章 文獻探討…………………………………………………...11 第一節 直觀的意義……………………………………………..11 第二節 直觀的特徵………………………………………………17 第三節 直觀的分類………………………………………………21 第四節 直觀的學習………………………………………………30 第五節 直觀的教學………………………………………………37 第六節 試探性的研究架構:以機率概念的直觀教學為例.….48 第三章 研究方法………………………………………………….. 59 第一節 行動研究法………………………………………………59 第二節 研究的場域和參與者……………………………………63 第三節 研究的設計和實施………………………………......65 第四節 研究工具的發展…………………………………………73 第五節 資料的收集和分析………………………………………86 第六節 研究的限制……………………………………………..92 第四章 研究結果……………………………………….…………..97 第一節 第一階段:起始期……………………………………....97 第二節 第二階段:螺旋期……………………………………….141 第三節 教學行動研究環………………………………………...184 第五章 討論和省思………………………………………….…….187 第一節 機率直觀教學的成效…………………………………...187 第二節 教學概念的轉變………………………………………...199 第三節 行動研究的省思………………………………………….204 第六章 階段性的結論和建議……………………………………..207 第一節 本研究的結論和啟示…………………………………….207 第二節 接續研究的建議………………………………………….210 參考文獻………………………………………………………………213 附 錄 目 次 附錄一:研究問卷……………………………………………………223 1(1)前測問卷…………………………………………………………223 1(2)前測問卷學生個別填答和統計…………………………………227 1(3)04班學生預測結果統計整理……………………………………230 2(1)後測問卷…………………………………………………………232 2(2)後測問卷第一部分學生個別填答和統計………………………234 2(3)後測問卷第二部分學生個別填答和統計…………………....236 3(1)延後測問卷………………………………………………………237 3(2)延後測問卷學生個別填答和統計........................239 4(1)全班討論問卷......................................................240 4(2)全班討論問卷第5題填答整理………………………………….243 5. 焦點小組晤談討論問卷………………………………………….245 6(1)評量問卷…………………………………………………………247 6(2)評量問卷學生個別填答和統計…………………………………249 7. 教學回饋意見問卷和填答整理………………………………….250 8. 概念反應問卷和填答…………………………………………….254 9. 學校成就測驗學生填答和分類整理………………………….…266 附錄二:訪談資料……………………………………………………267 1. 訪談一逐字稿…………………………………………………….267 2. 訪談二逐字稿……………………………………………….…..274 3. 訪談三逐字稿…………………………………………….…..…285 4. 焦點小組晤談教學部份逐字稿……………………………..….296 附錄三:學生直觀思考分類個別比較整理…………………………304 附錄四:第一、二冊主要數學概念複習問卷………………………305 附錄五:部分個案學生後測問卷填答……………………………..308 圖 目 次 圖2-1 老人與小姐........................................17 圖2-2 直觀分類關係圖………………………………………………23 圖2-3 試驗性機率直觀教學構思示意圖……………………………58 圖3-1 兩階段的教學行動研究設計圖………………………………67 圖3-2 起始期的研究設計圖…………………………………………69 圖3-3 螺旋前期的研究設計圖..............................70 圖3-4 螺旋後期的研究設計圖..............................72 圖5-1 Shaughnessy機率概念階段論修正圖………………………189 圖5-2 機率直觀教學的Delta1和Delta2運作圖………………….198 圖5-3 機率直觀教學的Delta1和Delta2 遞迴運作圖……………199 表 目 次 表3-1 焦點小組晤談教學個案學生類別……………………………71 表3-2 各階段使用研究工具對照表…………………………………73 表3-3 各階段問卷使用情形對照表…………………………………74 表3-4 前測問卷試題架構對照表……………………………………78 表3-5 後測問卷第二部份試題結構與來源對照表…………………80 表3-6 延後測問卷試題架構對照表…………………………………81 表3-7 全班討論問卷試題架構與來源對照表………………………83 表3-8 焦點小組晤談教學討論問卷試題架構與來源對照表………84 表3-9 評量問卷試題架構與來源對照表……………………………85 表3-10 各階段訪談目的、對象對照表………………………….…90 表3-11 資料編碼對照表…………………………………………….92 表4-1 前測問卷More A-More B學生答題情況對照表…………….98 表4-2 前測問卷More A-More B與國外研究比較對照表………….99 表4-3 前測問卷Same A-Same B學生答題情況對照表……………100 表4-4 前測問卷複合事件等機率迷思學生答題情況對照表…….105 表4-5 前測問卷一次投擲學生答題情況對照表………………….108 表4-6 前測問卷代表性學生答題情況對照表…………………….109 表4-7 前測問卷因果關係學生答題情況對照表...............111 表4-8 Fischbein & Schnarch與本研究對Falk問題的學生答題情況對照 表……………………………………………….…….……...112 表4-9 後測測問卷More A-More B學生答題情況對照表…………119 表4-10 後測問卷Same A-Same B與複合事件等機率迷思學生答題情況對照表…………………………………………………………......121 表4-11 後測問卷學生對不熟悉情境問題的直觀反應答題情況對照表…………………………………………………………..……....124 表4-12 後測問卷第一部分學生答題情況對照表………………….126 表4-13 延後測More A-More B 01班學生答題情況與前、後測比較對照表……………………………………………………………......141 表4-14 延後測複合事件等機率迷思01班學生答題情況與前、後測比較對照表…………………………………………………………....142 表4-15 延後測二項分佈01班學生答題情況與前、後測比較對照表143 表4-16 延後測超幾何分佈01班學生答題情況與後測比較對照表..144 表4-17 延後測因果關係01班學生答題情況與前測比較對照表…..146 表4-18 個案學生前、後、延後測答題及改變狀況對照表…….….159 表4-19 評量問卷More A-More B 01班學生答題情況對照表………167 表4-20 評量問卷二項分佈01班學生答題情況對照表………………168 表4-21 評量問卷超幾何分布01班學生答題情況對照表……………168 表4-22 評量問卷因果關係與條件機率01班學生答題情況對照表.169 表4-23 01班學生直觀思考表現分類情形…………………….……170 表4-24 01班與04班學生一般成就測驗表現分類情形……….....172 表4-25 教學回饋問卷第一題分類情形…………………………...175 表4-26 焦點小組晤談個案學生在螺旋前、後期教學感受對照表.176

    參考文獻
    一、中文部份
    王思峰(2002):實務社群與創造力。2003年7月20日取自http://myweb.hinet.net/home3/a86807707/article03-0.htm。
    王高田(2004):探索平面繪畫中構成的新形式。台北市:國立台灣師範大學美術研究所碩士論文(未出版)。
    任東屏(2004):R. J. Sternberg的智能理論解析及其在教學上的涵義。台北市:國立臺灣師範大學教育研究所博士論文(未出版)。
    余文卿和李白飛主編(2002):高級中學數學科教科書第四冊教師手冊。台北:龍騰書局。
    李佳奇(2001):高中生對條件機率解題策略與錯誤題型之探討。台北市:國立台灣師範大學數學研究所碩士論文(未出版)。
    李祖壽(1979):行動研究法。教育視導與教育輔導(上冊),台北市:黎明文化事業股份有限公司。
    杜聲鋒(1988):皮亞傑及其思想。台北市:遠流出版公司。
    林福來(1991):數學的診斷評量。教師天地,第54期,頁32-38。
    邱美虹(2000) 概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    徐雍智、蔡今中、和陳明璋(2002):數學創意類比與同儕評量及其網路案例設計之初探。師大學報:科學教育類。47(1),1-14。
    張世平(1994):行動研究法。教育研究法。黃光雄、簡茂發主編。台北市:師大書苑。
    張世昌(民91):花蓮縣國小中、高年級學生在數學解題上受直觀法則影響之調查研究。花蓮市:國立花蓮師範學院國小科學教育研究所碩士論文(未出版)。
    張春興(2000):張氏心理學辭典。台北市:東華書局。
    張鈿富(1986):行動研究法介紹。教育研究法之介紹研習叢書(十),台北市:台北市教師研習中心。
    許馨月和鍾靜(2004):國小教師面臨討論式數學教學問題之個案研究。國立臺北師範學院學報,17(1),57~82
    陳伯璋(1990):教育研究方法的新取向—質的研究方法(增訂版)。台北市:南宏出版社。
    陳松靖(2002):三位學生教師數學教學概念轉變歷程的個案研究。台北市:國立台灣師範大學碩士論文(未出版)。
    陳芷羚(2002):探討中學生機率概念與判斷偏誤關係之研究。台北市:國立台灣師範大學科學教育研究所碩士論文(未出版)。
    陳祐凱(2002):在資訊科技融入教學過程中,教師所須扮演的鷹架角色。2005年3月25日,取自台中市政府教育局國民教育輔導團電子報第二期,http://140.128.55.25/user197/e_news/0002/inf_1.htm。
    陳淑敏(1995):社會互動對認知發展的影響。八十四年度師範學院教育學術論文發表會論文集。台北市:教育部。
    陳惠邦(1998):教育行動研究。台北市:師大書苑。
    陶可(2004):淺論數學直覺思維及培養。2004年6月30日,取自蘇州科普之窗,http://www.szkp.org.cn/kepuleitai/display.asp?id=40132。
    黃政傑(1985):教育與進步。台北市:黃政傑。
    楊文金(1993):多重現象與電學概念理解研究。科學教育學刊,1(2),135-160。
    楊明家(1997):國小六年級不同解題能力學生在數學解題歷程後設認知行為之比較研究。屏東:屏東師範學院碩士論文(未出版)。
    劉俊庚(2002):迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響。台北市:國立臺灣師範大學科學教育研究所碩士論文(未出版)。
    蔡清田(1995):教育歷程中之教師專業自律:「教師即研究者」對課程發展與教師專業成長之蘊義。發表於「教育改革:理論與實際」國際學術研討會。台北市:國立台灣師範大學。
    蔡清田(2000):教育行動研究。台北市:五南圖書出版公司。
    鄭毓信(1996):數學方法論。廣西:廣西教育出版社。
    謝展文(2000):直覺法則對於數學及科學學習的影響--以國小四,五,六年級學生為對象。台北市:國立臺灣師範大學科學教育研究所碩士論文(未出版)。
    鍾聖校(1997):認知心理學。台北市:心理出版社。
    魏金財(1992):兒童對雨量之概念及其概念之改變類型。國教學報,4,225-256。
    饒見維(1996):教師專業發展-理論與實際。台北市:五南圖書出版公司。
    Altrichter, H., Posch, P., & Somekh, B. (1993). Teachers investigate their work.[(夏林清譯,1997):行動研究方法導論:教師動手做研究。台北市:遠流出版社。]
    Bennett, D.J. (1998). Randomness. [(王業鈞譯,2001)原著:你賭對了嗎?。台北市:新新聞文化。]
    Bruner, J.S.(1977) The process of education: a landmark in educational theory. Cambridge: Harvard University Press.[(邵瑞珍譯,1995):教育的歷程。台北市:五南圖書出版公司。]
    Cazden, C. B.(1988). Classroom discourse: The language of teaching and learning. Portsmouth, NH: Heinemann .[(蔡敏玲和彭海燕譯,1998):教室言談:教與學的語言。台北市:心理出版社。]
    Ginsburg, H.P.(1997).The clinical interview inpsychological research and practice. Cambridge: Cambridge University Press. [(謝如山譯,2004):進入兒童心中的世界。台北市:五南圖書出版公司。]
    Maxwell, J.A. (1996). Qualitative research design : An interactive Approach. London: Sage. [(高熏芳、林盈助和王向葵合譯,2001):質化研究設計:一種互動取向的方法。台北市:心理出版社。]
    Patton, M.Q. (1990). Qualitative Evaluation and Research Methods. [(吳芝儀和李奉儒譯,1995):質的評鑑與研究。台北市:桂冠圖書公司。]
    Polya, G.. (1954). Mathematics and plausible reasoning. [(李心煽、王日爽和李志堯合譯,1992):數學與猜想。台北市:九章出版社。]
    Skemp, R. R. (1989). Mathematics in the primary school. London:Routledge.[(許國輝譯,1995):小學數學教育-智性學習。香港:公開進修學院出版社。]
    Skemp, R.R. (1987). The psychology of learning mathematics. Hillsdale, NJ:Lawrence Erlbaum Associates.[(陳澤民譯,1995): 數學學習心理學。台北市:九章出版社。]
    Strauss, A. & Corbin, J. (1998). Basics of Qualitative Research. [(吳芝儀和廖梅花譯,2003):質性研究入門:紮根理論研究分法。台北市:濤石文化事業有限公司。]
    Vygotsky, L. S.(1961). Thought and language. Cambridge: The M.I.T. Press. [(李維譯,2000):思維與語言。台北市:昭明出版社。]

    二、英文部分
    Anderson , C., & Smith , E. (1986). Children’s conceptions of light and color: Understanding the role of unseen rays . (ED 270318).
    Andersson, B., & Karrqvist, C. (1983). How Swedish pupils, aged 12-15 years, understand light and its properties. European Journal of Science Education, 5, 387-402.
    Barnett, V. (1973).Comparative Statistical Inference. New York:Wiley.
    Basili, P. A., & Sanford, J. P. (1991). Conceptual change strategies and cooperative group work in chemistry. Journal of Research in Science Teaching, 28(4), 293-304.
    Bayer, A.S. (1990). Collaborative-apprenticeship learning : Language and thinking across the curriculum, K-12. Longon: Mayfield.
    Bell, A. (1993). Some experiments in diagnostic teaching . Educational Studies in Mathematics, 24, 115-137.
    Bell, G. H. (1985). Can schools develop knowledge their practice? School Organization, 5(2), 175-184.
    Bendall, S., Goldberg, F., & Galili, I. (1993). Prospective elementary teachers’ prior knowledge about light. Journal of Research in Science Teaching, 30(9), 1169-1187.
    Berg, T., & Brouwer, W. (1991). Teacher awareness of student alternative conceptions about rotational motion and gravity. Journal of Research in Science Teaching, 28(1), 3-18.
    Bernstein, B. (1990). The structuring of pedagogic discourse : Class, codes, and control. London: Routledge.
    Beyer, B., (1987). Practical strategies for the teaching of thinking. Boston:Allyn and Bacon.
    Borovcnik, M., & Bentz, H.J. (1991). Empirical research in understanding Probability. In R. Kapadia, and M. Borovcnik (Eds), Chance Encounters : Probability in Education(pp. 73-105), Dordrecht:. Kluwer Academic Publishers.
    Borvckin, M., & Peard, R. (1996). Probability . In A.J. Bishop et al.(Eds)., International Handbook of Mathematics Education (pp. 239-287). Dordrecht: Kluwer Academic Publishers.
    Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: Two preservice teachers’ conceptions and practices. Journal of Mathematics Teacher Education , 3, 125-153.
    Brown, A. L. (1987). Metacognition, Executive Control, Self-Regulation and Other More Mysterious Mechanisms. In F. E. Weinert , & R. H. Kluwe (Eds.), Metacognition, Motivation, and Understanding (pp. 65-116). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
    Brown, D. (1989). Students’ Concept of force: the importance of understanding Newton’s third law. Physical Education, 24, 353-357.
    Brown, J.S., & Duguid, P.(1991). Organizational learning and communities of practice: Toward a unified view of working, learning, and innovation, Organization Science, 2, 40-57.
    Bruner, J.S. (1960). The process of education. Cambridge : Harvard University Press.
    Carpenter, T.P., Corbitt, M.K., Kepner, H.S., Lindquist, M.M., & Reys R.E. (1981). What are the chances of your students knowing probability ? Reston, VA: National Council of Teachers of Mathematics,187-202.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in sciences. In R. Giere (Ed.), Cognitive Models of Science: Minnesota Studies in the Philosophy of Science (pp.129-186). Minneapolis: University of Minnesota Press.
    Chinn , C.A., & Brewer ,W.F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623-654.
    Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49.
    Chiu, M. M. (1996). Exploring the origins, use, and interaction of student intuitions: Comparing the lengths of paths . Journal for Reasearch in Mathematics Education , 27, (4), 478-504.
    Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.
    Cooney, T.J. (1994). Teacher education as an exercise in adaptation. In D. B. Aichele , & A. F. Coxford (Eds.), Professional Development for Teachers of Mathematics: 1994 Year Book (pp. 9-22). Reston: NCTM.
    Corey, S.M. (1953). Action research to improve school practice. New York: Bureau of Publication, Teacher’s College, Columbia University.
    Corey, S.M. (1965). Action research and the classroom teacher. In W. E. Courtney (Ed.), Applied research in education. New Jersey: Littlefield Adams and Co.
    Dowling, P. (1996). A sociological analysis of school mathematics texts. Educational Student in Mathematics, 3 (4), 389-415.
    Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the “cognitive conflict” strategy for conceptual change-Some implication, difficulties, and problems. Science Education, 74(5), 555-569.
    Driver, R. (1989). Students’conceptions and the learning of science. International Journal of Science Education, 11, 481-490.
    Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
    Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education. 75(6), 649-672.
    Elliott, J. (1991). Action research for educational change. Milton Keynes: Open University Press.
    English, L., & Halford, G. (1995) . Mathematics education : Models and processes. Mahwah, N.J. : Lawrence Erlbaum Associates.
    Ensor, P. (2001). From preservice mathematics teacher education to beginning teaching: A study in recontextualizing. Journal for Research in Mathematics Education, 32 (3), 296-320.
    Falk, R. (1988). Conditional probabilities: Insight and difficulties. In R. Davidson and J. Swift(Eds.), The Proceedings of the Second International Conference on teaching Statistics. Victoria, B. C.:University of Victoria.
    Feldman, A. (1994). Erzberger’s dilemma: Validity in action research and science teacher’ need to know. Science Education, 78(1), 83-101
    Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht:Reidel.
    Fischbein, E. (1987). Intuition in science and mathematics. An educational approach. Dordrecht: Reidel.
    Fischbein, E. (1991). Factors affecting probabilistic judgments in children and adolescents. Educational Studies in Mathematics, 22(6), 523-549.
    Fischbein, E. (1999a). Intuitions and schemata in mathematical reasoning. Educational Studies in Mathematics, 38, 11-50.
    Fischbein, E. (1999b). Psychology and mathematics education. Mathematical Thinking and Learning, 1,47-58.
    Fischbein, E., Deri, M., Nello, M.S., & Marino, M.S.(1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education,16(1), 3-17.
    Fischbein, E., & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuition? Educational Studies in Mathematics, 15, 1-24.
    Fischbein, E., & Grossman, A. (1997). Schemata and intuitions in combinatorial reasoning. Educational Studies in Mathematics, 34, 27- 47.
    Fischbein,E., Ileana Barbat, & Minzat, I. (1971). Primary and secondary intuitions in the introduction of probability. Educational Studies in Mathematics, 4, 264-280.
    Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for research in mathematics education, 28, 98-105.
    Fischbein, E., Tirosh, D., & Hess, P.(1979). The intuition of infinity. Educational Studies in Mathematics, 10 ,3-40.
    Fischbein , E. Tirosh, D., & Melamed, U. (1981). Is it possible to measure the intuitive acceptance of a mathematical statement ? Educational Studies in Mathematics, 12 , 491-512.
    Fisher, K., & Lipson, J. (1985). Information processing interpretation of errors in college science learning. Instructional Science, 14(1), 49-74
    Flavell, J.H. (1976). Metacognitive aspects of problem solving. In L.B. Resnick (Ed.), The Nature of Intelligence(pp. 231-235). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Friedel, A. W., Gabel, D. L., & Samuel, J. (1990). Using analogs for chemistry problem solving: Does it increase understanding? School Science and Mathematics, 90(8), 674-682.
    Furio, C., Azcona, R., Guisasola, J., & Ratcliffe, M. (2000). Difficulties in teaching the concepts of ‘amount of substance’ and ‘mole’. International Journal of Science Education, 22(12), 1285-1304.
    Garnett, P. J, Garnett, P. J., & Hackling, D. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69-95.
    Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163-176.
    Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155-170.
    Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children,s science and its consequences for teaching. Science Education, 66(4), 623-633.
    Goffree, F., & Dolk, M. (1995). Standards for primary mathematics teacher education. Utrecht: SLO/NVORWO
    Greer, B. (2001) .Understanding probabilistic thinking: The legacy of Efraim Fischbein. Educational Studies in Mathematics, 45, 15-33.
    Guba, E. G., & Lincoln, Y. S. (1994). Fourth generation evaluation. London: Sage Publications.
    Hashweh, M. (1986). Toward and explanation of conceptual change. European Journal of Science Education, 8(3), 229-249.
    Hersh, R. (1998). What is mathematics really ? London:Vintage Books.
    Hewson, P. W., & Thorley, N. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11(5), 541-553.
    Hufferd-Ackles, K., Fuson, K.C., & Sherin, M.G. (2004). Describing levels and components of a math-talk learning community. Journal for Research in Mathematics Education, 35 (2), 81-116.
    Hynd, C. R., McWhorter, J. Y., Phares, V. L., & Suttles, C. W. (1994). The role of instructional variables in conceptual change in high school physics topics. Journal of Research in Science Teaching, 31(4), 933-946.
    Jaworski, B. (1999). The plurality of knowledge growth in mathematics teaching. In B. Jaworski, T. Wood, & A. J. Pawson (Eds.), Mathematics teacher education: Critical international perspectives, London: The Falmer Press.
    Jaworski, B. (2001). Developing mathematics teaching: Teachers, teacher educators, and researchers as co-learners. In F.L. Lin, & T. J. Cooney (Eds.), Making Sense of Mathematics Teacher Education (pp. 295-320). Dordrecht: Kluwer Academic Publishers.
    Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3, 430-453.
    Kahneman, D., & Tversky, A. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207-232.
    Kemmis, S., & McTaggart, R. (Eds.) (1988). The Action Research Planner (3rd ed.). Geelong: Deakin University Press.
    Konold, C. (1991). Understanding students’ beliefs about probability. In E. von Glasersfeld (Ed.), Radical Constructivism in Mathematics Education (pp. 139-156). Holland: Kluwer.
    Kuhl, J. (1994). A theory of action and state orientation. In J. Kuhl, & J. Beckman (Eds.), Volition and Personality (pp. 9-46). NY: Springer-Verlag.
    Lewin, K. (1946). Action research and minority problems. Journal of Social Issues, 34-46.
    Liem, T. L. (1987). Invitations to Science Inquiry (2nd Ed.). Lexington, MA: Ginn Press.
    Mason, L. (1994). Cognitive and metacognitive aspects in conceptual change by analogy. Instructional Science, 22, 157-187.
    McNiff, J. (1988). Action research: principles and practice. London: Macmillan.
    Noss, R. (1987). Children’s learning of geometrical concepts through LOGO. Journal for Research in Mathematics Education, 18, 343-362.
    Paris, S. G., & Lindauer, B. K. (1982). The development of cognitive skills during childhood. In B. Wolman (Ed.), Handbook of Developmental Psychology. Englewood Cliffs, NJ: Prentice-Hall.
    Pirie, S. E., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it ? Educational Studies in Mathematics, 26, 165-190.
    Posner, G. J. (1989). Field experience : Methods of reflective teaching. New York : Longma.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2),211-227.
    Resnick, L.B. (1999). The Development of Mathematical Intuition. 科學評量與教師專業成長 — 邁向二十一世紀的科學教育學術研討會議手冊, 63-81, Taipi: National Taiwan Normal University.
    Schoenfeld, A. H. (1985). Mathematical problem solving. London : Academic Press.
    Schn, D. A. (1987). Educating the reflective practitioner. San Francisco: Jossey-Bass Publishers.
    Sfard, A. (2002). Thinking in metaphors and metaphors for thinking. In D. Tall and M. Thomas (Eds), Intelligence, Learning and Understanding in Mathematics: A tribute to Richard Skemp (pp.79-96). Australia:Post Pressed.
    Shapiro, B. L. (1989). What children bring to light: Giving high status to learners’ views and actions in science. Science Education, 73(6), 711-733.
    Shaughnessy, J. M. (1977). Misconceptions of probability:an experiment with a small-group, activity-based, model building approach to introductory probability at the college level. Educational Studies in Mathematics, 8, 295-316.
    Shaughnessy, J.M. (1992). Research in probability and statistics. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp.465-494). New York: Macmillan.
    Shulman, L.S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57 (1), 1~23.
    Sierpinska, A. (2001). Why intuitions are more of a problem in probability than in other domains of mathematics? Retrieved September 28, 2003, From http://alcor.concordia.ca/~sierp/proba.htm.
    Somekh, B. (1991). Teachers becoming researchers: An exploration in dynamic collaboration. RUCCUS Occasional Papers, 2 (pp. 97-144). London: University of Western Ontario.
    Stavy, R., & Tirosh, D. (2000). How students (mis)understand science and mathematics:intuitive rules. New York:Teachers College Press.
    Stead, B. F., & Osborne, R. J. (1980). Exploring science students’ concepts of light. Australian Science teachers Journal. 26(3), 84-90.
    Stenbring, H. (1991).The theoretical nature of probability in the classorm. In Kapadia, R. and Borovcnik, M. (Eds), Chance Encounters: Probability in Education(pp. 135-167). Dordrecht: Kluwer Academic Publishers.
    Stenhouse, L. (1973). The humanities curriculum project. In H. J. Butcher, & H. B. Pont(Eds.), Educational Research in Britain. London: University of London Press.
    Tao, P-K., & Gunstone, R. (1999). The process on conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36(7), 859-882.
    Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
    Tirosh, D. , & Stavy R.(1999)The intuitive rules theory and inservice teacher education. In F.L. Lin(Ed), Proceedings of the 1999 International Conference on Mathematics Teacher Education (pp. 205-225). Taipei: National Taiwan Normal University.
    Torff, B. , & Sternberg, R.J. (Eds.) (2001). Understanding and teaching the intuitive mind: Student and teacher learning. Mahway, NJ: Lawerence Erlbaum Associates.
    Tzur, R. (2001). Becoming mathematics teacher-educator: Conceptualizing the terrain through self-reflective analysis. Journal of Mathematics Teacher Education, 4, 259-283.
    Van Hiele, P. M.(1986). Structure and insight—A theory of mathematics education. London: Academic Press.
    Van Dooren, W., De Bock, D., Depaepe, F., Janssens, D., & Verschaffel, L. (2003). The illusion of linearity: Expanding the evidence towards probabilistic reasoning. Educational Studies in Mathematics, 53, 113-138.
    Van Dooren, W., De Bock, D., Weyers, D., & Verschaffel, L. (2004). The predictive power of intuitive rules: A critical analysis of the impact of “More A-More B” and “Same A-Same B”. Educational Studies in Mathematics, 56, 179-207.
    Van Driel, F., De Vos, W., Verloop, N., & Dekkers, H. (1998). Developing secondary students’ conceptions of chemical reactions: the introduction of chemical equilibrium. International Journal of Science Education, 20(4), 379-392.
    Venville, G..J. and Treagust, D.F. (1997). Analogies in Biology education: A contentious issue. The American Biology Teacher, 59(5), 282-287.
    Von Glasersfeld. E. (1987). Learning as a constructive activity. In C. Javier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp.3-17). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and instruction, 4, 45-69.
    Wenger, E. (1998). Communities of practice: learning, meaning, and identity. Cambridge: Cambridge University Press.
    White, R. T., & Gunstone, R. F. (1989). Metalearning and conceptual change. International Journal of Science Education, 11,577-586
    Wilson, J., & Clarke, D. (2004). Towards the modelling of mathematical metacognition. Mathematics Education Research Journal, 16(2), 25-48.

    QR CODE