簡易檢索 / 詳目顯示

研究生: 林依瑩
Lin, Yi-Ying
論文名稱: 透過發展科學探究測驗分析學生的探究思考形式
Analyzing Student's Inquiry Thinking Through the Development of an Online Scientific Inquiry Assessment
指導教授: 楊芳瑩
Yang, Fang-Ying
口試委員: 蔡孟蓉
Tsai, Meng-Jung
許衷源
Hsu, Chung-Yuan
楊芳瑩
Yang, Fang-Ying
口試日期: 2023/01/30
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 68
中文關鍵詞: 科學探究探究思考探究評量蠟燭燃燒
英文關鍵詞: scientific inquiry, inquiry thinking, inquiry assessment, candle burning
研究方法: 調查研究
DOI URL: http://doi.org/10.6345/NTNU202300318
論文種類: 學術論文
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 十二年國教自然科學課程綱要中提出以「探究與實作」為貫穿各學習階段且整合各學科內容 的核心素養,於是本研究決定發展出以思考智能為主的探究式試題,融入蠟燭燃燒的情境脈 絡,來分析高中生們針對探究式試題的回應,了解其在探究各階段的思考形式,並探討學生們 的科學認識信念與探究思考表現的關係。本研究的研究問題有以下四個:
    一、此蠟燭燃燒探究試題包含哪些面向,可反應出哪些思考形式? 二、學生們在回答探究試題時,產生了哪些回應類別和思考形式? 三、學生們的科學認識信念的形式為何? 四、學生們的探究測驗表現和其認識信念是否有關。
    本探究式試題結合探究階段和科學思考形式後,包含以下的思辨形式:「觀察解釋」、「發 現問題」、「運用科學知識提出現象解釋」、「提出假設」、「分辨變項」、「控制變項」、「分析或解 釋資料」、「評估證據的一致性」、「建立解釋理論/建模」等 ,基於以上的思辨模式,結合蠟燭 燃燒情境初步定題後再和探究與實作的專家一起討論最終完成定題,呈現出完整的探究試題。 測驗發展完成後,由研究者設計的探究式試題進行施測,共約 300 位學生參與,並在施測後以 「科學認識辯證信念問卷」來偵測學生們的科學認識信念,近一步探討學生的探究表現和科學認 識信念的相關性。
    本研究的探究試題的思考形式著重於和科學教育最相關的科學推理與科學辯證。研究結果 顯示,針對科學思考形式,學生在「觀察解釋」中得分最高,在「控制變因」、「整合理論和數據 進行辯證」和「批判反思」得分皆較低。在科學認識辯證信念問卷中,學生得分較高的是「科學知 識發展信念」面向,而學生的探究表現會受到其科學認識信念所影響,與普遍認同的「科學知識 發展信念」達到顯著正相關,但與普遍較不認同的「科學知識確定信念」達到顯著負相關。
    本探究試題採線上測驗,雖然已包含四個高中部分班級的樣本,但期許之後能有更大規模 資料的收集和分析,擴大到整個年級或是整個高中,才能做更廣泛的推論。

    The newly developed curriculum guideline for 12-year basic education in domain of nature science proposed a course of "inquiry and practices" to be the learning and teaching focus. Such a course integrates cross-domain subjects and hands-on activities. This study aimed to develop a situated online assessment testing the inquiry thinking ability in the context of candle burning. The target learners were the senior high school students. By the assessment, we hoped to understand their thinking modes in different inquiry stages and to find the relationship between students’ scientific epistemic beliefs and their inquiry thinking performance. There are four research questions as follows:
    1. What are the main characteristics of the “candle burning” inquiry assessment developed in the study, and what thinking modes can it reflect?
    2. What types of responses and thinking modes did the students produce when they answered the inquiry assessment?
    3. What are the forms of the students' scientific epistemic beliefs?
    4. Whether the students' inquiry thinking performance is related to their scientific epistemic beliefs.
    This inquiry assessment tested scientific thinking modes in different inquiry stages, including "observation and explanation", "discovering problems", "using scientific knowledge to explain phenomenon", "proposing hypotheses", "distinguishing variables", " Controlling variables", "analyzing or explaining data", "coordinating theory and evidence", "constructing explanatory theory/models" and “critical and reflective thinking.” We first worked closely with content expert to develop and test the inquiry assessment. After the development of the assessment is completed, about 300 high school students were given the test. After the test, an adapted questionnaire was applied to detect the students’ scientific epistemic beliefs. The associations between students’ inquiry thinking performance and their epistemic beliefs were discussed afterwards.
    The result of the study showed that, regarding the inquiry thinking modes, students scored the highest in "observation and explanation", but lower in "controlling variables", "coordinating theory and evidence" and "critical thinking". For the scientific epistemic beliefs, students scored higher in the dimension of "development". Students' inquiry thinking performances were found to associate with their scientific epistemic beliefs, in which students’ thinking performance was significantly positive with the epistemic beliefs in “development”, but negatively correlated with epistemic beliefs in "certainty".
    The inquiry assessment is an online assessment. Although there were about 300 students from four senior high school participating in the study, we still hope a larger-scale data collected and analyzed in the future in order to make extensive inferences.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 2 第三節 研究限制 3 第四節 名詞解釋 4 第二章 文獻探討 5 第一節 探究歷史 5 第二節 科學探究的思辨形式 6 第三節 探究評量相關研究分析 8 第四節 科學認識觀與科學探究 14 第三章 研究方法 17 第一節 研究參與者 17 第二節 研究架構與發展程序 17 第三節 研究工具 19 第四節 試題評分標準及一致性分析 21 第五節 科學認識辯證信念問卷 25 第四章 研究結果 27 第一節 蠟燭燃燒探究活動表現 27 第二節 學生的知識認識觀 36 第三節 探究表現與認識信念的關係 37 第五章 討論 46 第一節 研究摘述 46 第二節 研究結果討論 46 第三節 研究結果的教學意義 54 參考文獻 56 附錄一 探究試題 63 附錄二 科學認識辯證信念問卷 67

    吳百興, 張耀云, & 吳心楷. (2010). 科學探究活動中的科學推理. 科學教育研究與發展季刊.
    吳尚庭. (2020). 運用眼球追蹤技術分析 AR 環境下的地科概念學習歷程及科學推理表現.
    吳佳蓮, & 吳心楷. (2006). 科學探究活動中國小五年級兒童科學解釋能力及實務認識論之研究. 發表於中華民國第二十二屆科學教育學術研討會. 台北市: 國立臺灣師範大學.
    李松濤, 林煥祥, & 洪振方. (2010). 探究式教學對學童科學論證能力影響之探究. 科學教育學刊, 18(3), 177-203.
    林志能, 陳玲君, & 洪振方. (2010). 高一學生多變因因果推理與論證能力之相關研究. 教育實踐與研究.
    林珮君(2008)。探究教學對國中學生知識觀與學習動機之影響。﹝碩士論文。國立彰化師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/rsejz2。洪逸文, & 湯宜佩. (2016). 高中特色課程的開發與實施: 以論證課程為例. Journal of Curriculum Studies, 11(1), 23-57.
    洪振方. (2003). 探究式教學的歷史回顧與創造性探究模式之初探. 高雄 高雄 高雄 高雄師大學報 師大學報 師大學報 師大學報, 15(3), 641-662.
    高慧蓮. (2006). 九年一貫課程提升學生科學本質能力指標表現可行教學模組之開發研究. 科學教育學刊, 14(4), 401-425.
    教育部. (2000). 國民中小學九年一貫課程 (第一界階段) 暫行綱要. 教育部.
    教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北市: 作者.
    陳君婷, & 佘曉清. (2010). 探討科學推理融入科學探究課程對國小學生探究能力與科學推理之影響
    張珮珊, 賴吉永, & 溫媺純. (2017). 科學探究與實作課程的發展, 實施與評量: 以實驗室中的科學論證為核心之研究. 科學教育學刊, 25(4), 355-389.
    陳美智(2019)。高中生科學探究能力、科學推理能力、科學證據概念及科學論證概念徑路模式之研究。﹝博士論文。國立高雄師範大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/9wvm7j。
    湯宜佩, 張文馨, & 許瑛玿. (2021). 針對高中科學論證教學研究回顧與評析. 教育科學研究期刊, 66(4), 217-243.
    黃志賢(2003)。科學探究教學模組對國小中年級兒童科學本質觀影響之行動研究。﹝碩士論文。國立屏東師範學院﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/82su79。
    隋奇融. (2021). 以 Go-Lab 平台發展與實施科學探究實作評量.
    楊秀停, & 王國華. (2007). 實施引導式探究教學對於國小學童學習成效之影響. 科學教育學刊, 15(4), 439-459.
    楊榮祥. (1988). 自然科學教學法專輯. In: 國立台灣師範大學科學教育中心編印.
    劉俊庚. (2001). 迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響.
    劉湘瑤. (2016). 科學探究的教學與評量. In: 科學研習月刊.
    謝州恩, & 吳心楷. (2006). 探究情境中國小學童科學解釋能力成長之研究.
    Bourdeau, V., & Arnold, M. (2009). The science process skills inventory. Corvallis, OR.
    Bråten, I., Brandmo, C., Ferguson, L. E., & Strømsø, H. I. (2022). Epistemic justification in multiple document literacy: A refutation text intervention. Contemporary educational psychology, 71, 102122.
    Bråten, I., Ferguson, L. E., Anmarkrud, Ø., Strømsø, H. I., & Brandmo, C. (2014). Modeling relations between students’ justification for knowing beliefs in science, motivation for understanding what they read in science, and science achievement. International Journal of Educational Research, 66, 1-12.
    Bruner, J. S. (1966). Toward a theory of instruction (Vol. 59). Harvard University Press.
    Cartier, J. L., & Stewart, J. (2000). Teaching the nature of inquiry: Further developments in a high school genetics curriculum. Science & Education, 9(3), 247-267.
    Cheng, C. H., Bråten, I., Yang, F. Y., & Brandmo, C. (2021). Investigating structural relationships among upper‐secondary school students' beliefs about knowledge, justification for knowing, and Internet‐specific justification in the domain of science. Journal of Research in Science Teaching, 58(7), 980-1009.
    Cheng, K.-H. (2018). Surveying students’ conceptions of learning science by augmented reality and their scientific epistemic beliefs. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1147-1159.
    Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary educational psychology, 29(2), 186-204.
    Co-operation, O. f. E., & Staff, D. (2017). OECD skills outlook 2017: Skills and global value chains. OECD Paris.
    Council, N. R. (1996). National science education standards. National Academies Press.
    Council, N. R. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press.
    Council, N. R. (2013). Next generation science standards: For states, by states.
    Council, N. R., Singer, S. R., Nielsen, N. R., & Schweingruber, H. A. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. National Academies Press Washington, DC.
    Davis, E. (2003). Untangling dimensions of middle school students' beliefs about scientific knowledge and science learning. International Journal of Science Education, 25(4), 439-468.
    Dewey, J. (1910). How we think. Lexington, MA: DC Heath.
    Germann, P. J., Aram, R., & Burke, G. (1996). Identifying patterns and relationships among the responses of seventh‐grade students to the science process skill of designing experiments. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(1), 79-99. Germann, P. J., & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions, and providing evidence. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(7), 773-798.
    Havdala, R., & Ashkenazi, G. (2007). Coordination of theory and evidence: Effect of epistemological theories on students' laboratory practice. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 44(8), 1134-1159.
    Hogan, K., & Fisherkeller, J. (2005). Dialogue as data: Assessing students' scientific reasoning with interactive protocols. In Assessing science understanding (pp. 95-127). Elsevier.
    Hofer, B. K. (2004). Exploring the dimensions of personal epistemology in differing classroom contexts: Student interpretations during the first year of college. Contemporary educational psychology, 29(2), 129-163.
    Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of educational research, 67(1), 88-140.
    Hofer, B. K., & Pintrich, P. R. (2012). Personal epistemology: The psychology of beliefs about knowledge and knowing. Routledge.
    Inch, E. S. (1989). Critical Thinking and Communication: The Use of Reason in Argument, 6/e. Pearson Education India.
    Jeong, H., Songer, N. B., & Lee, S.-Y. (2007). Evidentiary competence: sixth graders' understanding for gathering and interpreting evidence in scientific investigations. Research in Science Education, 37(1), 75-97.
    Kammerer, Y., Gottschling, S., & Bråten, I. (2021). The role of internet-specific justification beliefs in source evaluation and corroboration during web search on an unsettled socio-scientific issue. Journal of Educational Computing Research, 59(2), 342-378.
    Keys, C. W. (1998). A study of grade six students generating questions and plans for open-ended science investigations. Research in Science Education, 28, 301-316.
    Kizilgunes, B., Tekkaya, C., & Sungur, S. (2009). Modeling the relations among students' epistemological beliefs, motivation, learning approach, and achievement. The Journal of educational research, 102(4), 243-256.
    Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3-4), 313-350.
    Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological review, 96(4), 674.
    Kuhn, D. (2005). Education for thinking. Harvard University Press.
    Kuhn, D. (2007). Reasoning about multiple variables: Control of variables is not the only challenge. Science Education, 91(5), 710-726.
    Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking & Reasoning, 13(2), 90-104.
    Lawson, A. E. (1995). Science teaching and the development of thinking. Wadsworth Belmont, CA.
    Lee, S. W.-Y., & Tsai, C.-C. (2012). Students' Domain-Specific Scientific Epistemological Beliefs: A Comparison Between Biology and Physics. Asia-Pacific Education Researcher (De La Salle University Manila), 21(2).
    Li, J., Klahr, D., & Siler, S. (2006). What Lies beneath the Science Achievement Gap: The Challenges of Aligning Science Instruction with Standards and Tests. Science educator, 15(1), 1-12.
    Liu, O. L., Lee, H. S., Hofstetter, C., & Linn, M. C. (2008). Assessing knowledge integration in science: Construct, measures, and evidence. Educational Assessment, 13(1), 33-55. 26.
    Mason, L., & Scirica, F. (2006). Prediction of students' argumentation skills about controversial topics by epistemological understanding. Learning and instruction, 16(5), 492-509.
    Nussbaum, E. M., Sinatra, G. M., & Poliquin, A. (2008). Role of epistemic beliefs and scientific argumentation in science learning. International Journal of Science Education, 30(15), 1977-1999.
    Perry Jr, W. G. (1999). Forms of Intellectual and Ethical Development in the College Years: A Scheme. Jossey-Bass Higher and Adult Education Series. ERIC.
    Pine, J., Aschbacher, P., Roth, E., Jones, M., McPhee, C., Martin, C., Phelps, S., Kyle, T., & Foley, B. (2006). Fifth graders' science inquiry abilities: A comparative study of students in hands‐on and textbook curricula. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43(5), 467-484.
    Roberts, R., & Gott, R. (2000). Procedural Understanding in Biology: How Is It Characterized in Texts? School science review, 82(298), 83-91.
    Schommer, M., Crouse, A., & Rhodes, N. (1992). Epistemological beliefs and mathematical text comprehension: Believing it is simple does not make it so. Journal of educational psychology, 84(4), 435.
    Schommer-Aikins, M., & Hutter, R. (2002). Epistemological beliefs and thinking about everyday controversial issues. The journal of Psychology, 136(1), 5-20. Stewart, J., & Rudolph, J. L. (2001). Considering the nature of scientific problems when designing science curricula. Science Education, 85(3), 207-222.
    Tomkins, S. P., & Tunnicliffe, S. D. (2001). Looking for ideas: observation, interpretation and hypothesis-making by 12-year-old pupils undertaking science investigations. International Journal of Science Education, 23(8), 791-813.
    Toulmin, S. (1958). The uses of argument cambridge university press. Cambridge, UK.
    Trapp, R., Driscoll, W., & Zompetti, J. (2005). Discovering the world through debate: A practical guide to educational debate for debaters, coaches and judges. IDEA.
    Tretter, T. R., & Jones, M. G. (2003). Relationships between inquiry‐based teaching and physical science standardized test scores. School Science and Mathematics, 103(7), 345-350.
    Wallace, C. S., Tsoi, M. Y., Calkin, J., & Darley, M. (2003). Learning from inquiry‐based laboratories in nonmajor biology: An interpretive study of the relationships among inquiry experience, epistemologies, and conceptual growth. Journal of Research in Science Teaching, 40(10), 986-1024.
    Yang, F.-Y., Bhagat, K. K., & Cheng, C.-H. (2019). Associations of epistemic beliefs in science and scientific reasoning in university students from Taiwan and India. International Journal of Science Education, 41(10), 1347-1365.
    Yanto, B. E., Subali, B., & Suyanto, S. (2019). Improving Students' Scientific Reasoning Skills through the Three Levels of Inquiry. International Journal of Instruction, 12(4), 689-704.
    Zimmerman, C. (2005). The development of scientific reasoning skills: What psychologists contribute to an understanding of elementary science learning. Final draft of a report to the National Research Council Committee on science learning kindergarten through eight grade.
    Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental review, 27(2), 172-223. 
    Zimmerman, D. W. (2000). Shoemaker’s argument for his theory of properties. Facta philosophica, 2(2), 271-290.

    無法下載圖示 電子全文延後公開
    2025/12/25
    QR CODE