研究生: |
連城 |
---|---|
論文名稱: |
AN OVERVIEW OF ZETA FUNCTIONS ON HYPERSURFACES OVER FINITE FIELDS AND DWORK'S THEOREM AN OVERVIEW OF ZETA FUNCTIONS ON HYPERSURFACES OVER FINITE FIELDS AND DWORK'S THEOREM |
指導教授: | 夏良忠 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 24 |
英文關鍵詞: | finite fields, p-adic numbers, Dwork's Theorem, Newton polygon, Weierstrass Preparation Theorem |
論文種類: | 學術論文 |
相關次數: | 點閱:102 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We study the Hasse Weil zeta function associated to
a hypersurface of dimension n over finite field. The main goal is to give an overview of the proof of Dwork's Theorem. The main ingredients are p-adic analysis, linear algebra, and Weierstrass Preparation Theorem
[1] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, (1984),10-
120.
[2] Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Num-
ber Theory, (1972), 151-166.
[3] John B. Fraleigh, A First Course in Abstract Algebra, (2003), 457-463.
[4] Walter Rudin, Principles of Mathematical Analysis(third edition), (1976), 47-
53.