簡易檢索 / 詳目顯示

研究生: 連城
論文名稱: AN OVERVIEW OF ZETA FUNCTIONS ON HYPERSURFACES OVER FINITE FIELDS AND DWORK'S THEOREM
AN OVERVIEW OF ZETA FUNCTIONS ON HYPERSURFACES OVER FINITE FIELDS AND DWORK'S THEOREM
指導教授: 夏良忠
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 24
英文關鍵詞: finite fields, p-adic numbers, Dwork's Theorem, Newton polygon, Weierstrass Preparation Theorem
論文種類: 學術論文
相關次數: 點閱:102下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We study the Hasse Weil zeta function associated to
    a hypersurface of dimension n over finite fi eld. The main goal is to give an overview of the proof of Dwork's Theorem. The main ingredients are p-adic analysis, linear algebra, and Weierstrass Preparation Theorem

    1. Introduction 3 2. Preliminaries 3 3. p-adic number and p-adic power series 5 4. Counting the set of rational points 8 5. Linear maps on the vector space of power series 12 6. Newton polygon and Weierstrass Preparation Theorem 17 7. The end of the proof 21 References 24

    [1] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, (1984),10-
    120.
    [2] Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Num-
    ber Theory, (1972), 151-166.
    [3] John B. Fraleigh, A First Course in Abstract Algebra, (2003), 457-463.
    [4] Walter Rudin, Principles of Mathematical Analysis(third edition), (1976), 47-
    53.

    下載圖示
    QR CODE