簡易檢索 / 詳目顯示

研究生: 林易芳
Yi-Fang Lin
論文名稱: 貴州雅水剖面石炭紀腕足動物碳氧同位素紀錄之環境意義
Carboniferous environment indicated by oxygen and carbon isotope records of brachiopod shells from the Yashui Section in Guizhou
指導教授: 米泓生
Mii, Horng-Sheng
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 123
中文關鍵詞: 熱帶地區石炭紀腕足動物碳氧同位素華南地塊
英文關鍵詞: Tropical Region, Carboniferous, brachiopod, stable carbon and oxygen isotope, South China
論文種類: 學術論文
相關次數: 點閱:127下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採集了395個中國貴州省雅水剖面的腕足動物殼體化石殼體,分析其中139個化石標本之穩定碳氧同位素成分來探討華南地塊於石炭紀時期熱帶地區的環境變化。
    雅水剖面在早石炭紀地層分為舊司階(早Visean)、上司階(晚Visean)和德塢階(Serpukhovian),本研究自這139個殼體中共取了369個標本點進行碳氧同位素分析,但僅有89個標本點的數據取自保存良好的部分。舊司階的殼體皆保存不理想;上司階(晚Visean)保存良好殼體的δ18O和δ13C平均值分別為-3.8±0.7‰(1σ,N=52)和2.3±2.4‰;德塢階(Serpukhovian) 保存良好殼體的δ18O和δ13C平均值分別為-3.0±0.5‰(1σ,N=37)和4.1±2.0‰,從上司階到德塢階的δ13C平均值增加1.8‰,可能與碳埋藏量增加有關。
    假設早石炭紀海水的δ18O數值為-1‰ (SMOW)。上司階的氧同位素溫度為24~30°C平均(平均值28°C),而在德塢階的氧同位素溫度範圍介於23~26°C之間(平均值25℃),由上司階(晚期Visean)至德塢階(Serpukhovian)平均溫度呈現約下降3°C的現象,與Mg/Ca比值所計算之溫度變化大致相同。上司階(晚期Visean)至德塢階(Serpukhovian)的降溫與碳同位素數值所呈現的碳埋藏量增加,二氧化碳含量降低的紀錄一致。雅水剖面所呈現之平均值28°C至25°C的溫暖溫度範圍反映出華南地區於石炭紀位於熱帶地區海水溫度較高的特性,類似現今西太平洋暖池的溫度特徵。


    This study constructed the Carboniferous tropical environment of Yashui section, Guizhou, South China by analyzing the stable isotope compositions of brachiopod shells. A total of 395 fossil brachiopod shells were collected. One hundred and thirty nine samples were cut, thin-sectioned, and examined under plain light and cathodoluminescence for evaluation of shell preservation.
    Only 89 out of 369 carbonate powder samples were determined well preserved. In ascending order, mean δ18O values of well preserved brachiopod shells are -3.8 ± 0.7‰ and -3.0±0.5‰ for Shangsian Stage (Late Visean) and Dewaun Stage (Serpukhovian), respectively. Mean 13C values of well preserved brachiopod shells are respectively 2.3 ± 2.4‰ (1σ, N = 52) for Shangsian Stage (Late Visean) and 4.1±2.0‰ (1σ, N = 37) for Dewaun Stage (Serpukhovian). Enrichment in δ13C value of 1.8‰ between Shangsian Stage and Dewaun Stage may correspond to the increased burial rate of organic matter as proposed by previous studies.
    Assuming the δ18O of Early Carboniferous seawater was -1.0‰, the sea water temperature were 24~30°C (average 28°C) for Shangsian Stage and 23~26°C (average 25°C) for Dewaun Stage. The 3°C decrease in temperature from Shangsian Stage to Dewaun Stage was consistent with the temperature estimation based on the Mg/Ca ratios. The Late Visean to Serpukhovian cooling may be caused by the decrease in atmospheric CO2 concentration as indicated by the increase in carbon isotope value. The overall warm tropical sea surface temperature of South China indicating that modern Western Pacific Warm Pool sea surface temperature characteristic may have existed in Early-Middle Carboniferous.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目 VIII 表目 XII 第一章、緒論 1 1.1 前言 1 1.2 同位素與碳酸鈣殼體的應用 1 1.3 成岩作用 2 1.4 腕足動物 3 1.5 前人研究 5 1.5.1 石炭紀古地理與古氣候 5 1.5.2 石炭紀穩定同位素相關研究 9 1.6 研究目的 10 第二章、研究區域及標本 11 2.1研究區域 11 2.2 區域地質 11 2.3 研究地層 14 2.3.1舊司階(Jiusian Stage)(圖2.5): 14 2.3.2上司階(Shangsi Stage)(圖2.6): 15 2.3.3德塢階(Dewuan Stage)(圖2.7): 15 2.4標本採集 19 第三章、研究方法 22 3.1 研究流程 22 3.2 殼體標本及前處理 22 3.3 化石薄片製作 23 3.4 透射光及陰極射線顯微鏡 23 3.5 穩定碳氧同位素分析 25 3.6 掃描式電子顯微鏡 25 3.7電子微探針分析 25 第四章、結果與討論 28 4.1透射光及陰極射線觀察結果 28 4.2 電子掃描顯微鏡觀察 28 4.3 微量元素分析及殼體保存度 38 4.4 穩定碳氧同位素分析 43 4.4.1 Visean腕足殼體 43 4.4.2 Serpukhovian腕足殼體 44 4.5 雅水剖面Mississippian腕足殼體碳氧同位素記錄與微量元素在環境上的意義 47 4.5.1 碳同位素記錄 47 4.5.2 氧同位素記錄 50 4.6 中國華南碳氧同位素及Mg/Ca比值之古環境意義 55 4.6.1 δ13C、δ18O與冰期 55 4.6.2 Mg/Ca比值、δ18O與古環境的意義 55 4.7 低緯度地區的溫度變化 62 第五章、結論 65 文獻 66 附錄一、貴州雅水剖面腕足種屬與標本編號對照表 79 附錄二、中國貴州省雅水剖面腕足動物化石殼體殼體微構造及穩定碳氧同位素 84 附錄三、中國貴州省雅水剖面腕足動物元素組成分析數值 103 作者簡介 123   圖目 圖 1.1 腕足動物殼體(有鉸綱)構造圖。(取自Black, 1970) 4 圖 1.2 石炭紀全球海陸分布圖。修改自http://jan.ucc.nau.edu/~rcb7 7 圖 1.3 石炭紀-二疊紀冰期的冰川發展階段劃分對比。(取自Fielding et al., 2008) 8 圖 1.4 石炭紀腕足殼體碳氧同位素變化趨勢圖。(葉昭松, 2011整理自 Mii et al., 2001;Popp et al., 1986;Bruckschen et al., 1999) 10 圖 2.1 研究區域圖,圖中黃色區塊為本研究中國華南地區貴州省;紅色星號為雅水剖面。 12 圖 2.2 雅水剖面位於惠水縣至雅水縣的公路旁,紅色星號為本研究地點(修改自Groves, 2012)。 13 圖 2.3 貴州省石炭紀地層地質分區圖,本研究標本採自獨山-威寧分區。(程裕淇等人,1994) 14 圖 2.4 全球密西西比世地層劃分對比 (修改自林巍, 2009) 16 圖 2.5 中國貴州省雅水剖面露頭-舊司階層位。 17 圖 2.6 中國貴州省雅水剖面露頭-上司階層位。 17 圖 2.7 中國貴州省雅水剖面露頭-德塢階層位。 18 圖 2.8 湖南獅鼻長身貝(Pugilis hunanesis)(a)正面觀(b)側面觀 20 圖 2.9 網格長身貝(Dictyoclostus)(a)正面觀(b)側面觀 20 圖 2.10 巨大長身貝(Gigantoproductus)(a)正面觀(b)正面觀 20 圖 2.11 細線貝(Striatifera tenella sarytchera)正面觀 21 圖 2.12 長身貝(Productus)正面觀 21 圖 3.1(A)(B)為標本YS147(Gigantoproductus)分別為在透射光和陰極射線下的照片,保存好的殼體在透射光可見微細構造,陰極射線不發光。(C)(D)為標本YS030(Pugilis hunanesis)分別為在透射光和陰極射線下的照片,保存差的殼體在透射光看不清楚微細構造,陰極射線下發光。(p:稜柱層;f:纖維層;gb:生長紋;NL:不發光;L:發光;LM:圍岩) …………..24 圖 3.2 (A)將固定在載物台上的標本鍍Pt,以利在電子微探針分析時導電。(B)國立台灣大學地質科學系微古生物研究室之掃描式電子顯微鏡HITACHI S-2400 27 圖 4.1 (A)為標本YS098,石炭紀舊司階Pugilis hunanesis的外觀。(B)為完整殼體剖面的透射光影像,可見清楚的纖維層。(C)為完整殼體剖面的陰極射線影像,可見殼體發橘紅光。(L+NL:發光占50%以上,其餘不發光;L:發光;LM:圍岩) 29 圖 4.2 (A)為標本YS025,石炭紀舊司階Dictyoclostus的外觀。(B)為完整殼體剖面的透射光影像。(C)為完整殼體剖面的陰極射線影像,可見殼體發橘紅光。(L:發光;LM:圍岩) 30 圖 4.3 (A)為標本YS169,石炭紀上司階Gigantoproductus的外觀。(B)為殼體剖面的透射光影像,可見清楚的微細構造及生長紋。(C)為殼體剖面的陰極射線影像,可見殼體大部分為不發光。(p:稜柱狀;NL:不發光;L:發光) 31 圖 4.4 (A)為標本YS160,石炭紀上司階Gigantoproductus的外觀。(B)為殼體剖面的透射光影像,微細構造無法辨別。(C)為殼體剖面的陰極射線影像,殼體為不發光。(NL:不發光) 32 圖 4.5 (A)為標本YS235,石炭紀德塢階未知種屬(unknown)的外觀。(B)殼體剖面的透射光影像,可見清楚的微細構造。(C)為殼體剖面的陰極射線影像,殼體大部分為不發光及裂紋。(p:稜柱狀NL:不發光;LM:圍岩) 33 圖 4.6 貴州雅水剖面石炭紀腕足動物殼體電子掃描顯微鏡下觀察結果。(A、B)為舊司階YS021保存差的Pugilis hunanesis。(C、D)為舊司階YS049保存差的Pugilis hunanesis。(E)為上司階YS160保存差的Gigantoproductus。(F)為德塢階YS347保存差的Gigantoproductus。(G)為德塢階YS351保存差的Gigantoproductus。(md:微溶蝕;d:溶蝕。)(H)為上司階YS146保存好的Gigantoproductus。(I、J)為上司階YS147保存好的Gigantoproductus。(p:稜柱狀;f:纖維狀。) 34 圖 4.7 不同地區Na、Mg、Sr、S微量元素散佈圖。 40 圖 4.8 中國華南Visean時期貴州雅水剖面Si、Al、Fe、Mn微量元素分析分佈結果統計圖。 a為Si/Ca結果統計。b為Al /Ca結果統計。c為Fe /Ca結果統計。d為Mn/Ca結果統計。 41 圖 4.9 中國華南Serpukhovian時期貴州雅水剖面Si、Al、Fe、Mn微量元素分析分佈結果統計圖。a為Si/Ca結果統計。b為Al /Ca結果統計。c為Fe /Ca結果統計。d為Mn/Ca結果統計。 42 圖 4. 10 中國華南Visean時期貴州雅水剖面碳氧同位素分佈圖。 45 圖 4.11中國華南Serpukhovian時期貴州雅水剖面碳氧同位素分佈圖。 45 圖 4.12 中國華南貴州雅水剖面地層與碳氧同位素和溫度的年代變化對照圖。 49 圖 4.13 中國華南Visean與Serpukhovian時期貴州雅水剖面碳氧同位素散佈圖 51 圖 4.14 早石炭紀時期全球蒸發岩、冰磧石及煤層分布圖。(取自 http://www.scotese.com, 2013) 52 圖 4.15 中國華南貴州雅水剖面碳氧同位素記錄與前人研究石炭紀腕足碳氧同位素變化趨勢比較圖。雅水剖面腕足標本年代由採樣地層年代估計而得,尚無標準的絕對年代數據,碳氧同位素數值皆為同層殼體的平均值(水平橫線代表error standard)。(修改自Mii et al., 2001;Popp et al., 1986;Bruckschen et al., 1999) 53 圖 4. 16 中國華南貴州雅水剖面保存良好的腕足殼體在Visean及Serpukhovian氧同位素記錄與俄羅斯和古西班牙地層變化比較圖。(修改自Maider et al., 2008;Menning et al., 2006;Mii et al., 2001) 54 圖 4.17 雅水剖面保存良好腕足殼體的Mg/Ca與δ18O的散佈圖。 56 圖 4.18 Mississippian時期中國貴州雅水剖面腕足殼體的碳氧同位素數值與前人不同區域研究記錄比較。黃色框框為本研究。(修改自http://cpgeosystems.com/mollglobe.html ; Mii et al., 1999 ; Wang,1998 ; Maider et al., 2008 ; Ye, 2011) 59 圖 4.19 晚石炭紀海流模擬(300Ma),顯示Paleotathys Ocean有暖流經過華南地區(紅點), 因此造成該地區的海溫較高。(KZ:Kazhakstan,TA:Tarim,NC:North China,MON:Mongolia, SC:South China,IC:Indochina,WB:West Burma,KK:Karakoram, A:central Afghanistan,AD:Adria) (取自Angiolini et al., 2007) 60 圖 4.20 二疊紀氣候模式模擬海表溫分布圖 (取自Kiehk and Shields, 2005) 61 圖 4.21 中國華南貴州雅水剖面密西西比世腕足殼體氧同位素季節性變化圖 (a) (b) (c)為Visean時期腕足殼體。(d)為Serpukhovian時期腕足殼體。 63 圖 4.22 中國華南貴州雅水剖面密西西比世腕足殼體氧同位素季節性變化圖 (e) (f) (g)為Serpukhovian時期腕足殼體。 64   表目 表 3.1本研究研究方法之流程 22 表 3.2 電子微探針分析各元素的偵測時間及最低可測量值(Mii and Grossman, 1994) 27 表 4.1 Visean時期去除矽化作用後的腕足殼體微量元素平均值. 40 表 4.2 中國華南Visean及Serpukhovian時期貴州雅水剖面腕足動物平均碳氧同位素數值。(NL*代表在透射光下微構造呈現不清楚,陰極射線下不發光) 46

    Algeo, T. J., Berner, R. A., Maynard, J. B., and Scheckler, S. E., 1995, Late Devonian oceanic anoxic events and biotic crises:Rooted in the evolution of vascular land plants?:GSA Today, v.5, p.45, 64-66.
    Anderson, T. F. and Schneidermann, N., 1973, Stable isotope relationships in pelagic limestones from the Central Caribbean, Leg 15, Deep Sea Drilling Project, in Edgar, N. T., Saunders, J. B., Bolli, H. M., Boyce, R. E., Broecker, W. S., Donnelly, T. W., Gieskes, J. M., Hay, W. W., Horowitz, R. M., Maurrasse, F., Perez Nieto, H., Prell, W., Premoli Silva, I., Riedel, W. R., Schneidermann, N., Waterman, L. S., Kaneps, A. G., and Herring, J. R., eds, Initial reports of the Deep Sea Drilling Project, covering Leg 15 of the cruises of the drilling vessel Glomar Challenger, San Juan, Puerto Rico to Cristobal, Panama; December 1970-February 1971 :Initial Reports of the Deep Sea Drilling Project, no. 15, p. 795-803.
    Anderson, T.F., and Arthur, M.A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M.A et al., (eds): Stable isotopes in sedimentary geology, SEPM short Course Note, v. 10, p. 1-151.
    Angiolini, L., Gaetani, M., Muttoni, G., Stephenson, M.H., and Zanchi, A., 2007, Tethyan oceanic currents and climate gradients 300 m.y. ago.: Geology, p. 1071-1074.
    Angiolini, L., Jadoul, F., Leng, M.J., Stephenson, M.H., Rushton, J., Chenery, S., and Crippa, G., 2009, How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells: Journal of the Geological Society, p. 933-945.
    Auclair, A. C., Joachimski, M.M., and Lecuyer, C., 2003, Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of terebatalia transversa(Brachiopoda): Chemical Geology, p. 59-78.
    Bailey, T.R., Rosenthal, Y., McArthur, J.M., van de Schootbrugge, B., Thirlwall, M.F., 2003. Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth and Planetary Science Letters 212, 307–320.
    Banner, J. L., and Kaufman, J., 1994, The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri: Geological Society of America Bulletin, v. 106, p. 1074-1082.
    Barbin , V., Ramseyer, K., Debenay, J.P., Schein, E., Roux, M., and Decrouez, D., 1991, Cathodoluminescence of recent biogenic carbonates: an environmental and ontogentic fingerprint.: Geological Magazine, v. 128, p. 19-26.
    Beerling, D. J., Lake, J. A., Berner, R. A., Hickey, L. J., Taylor, D. W., and Royer, D. L., 2002, Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere: Geochimica et Cosmochimica Acta, v. 66, no. 21, p. 3757-3767.
    Berner, R. A., 1991, A model for atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 291, no. 4, p. 339-376.
    Berner, R. A., 1994, GEOCARB II; a revised model of atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 294, no. 1, p. 56-91
    Berner, R. A., 1997, The rise of plants and their effect on weathering and atmospheric CO2: Science, v. 276, no. 5312, p. 544-546.
    Brand, U., 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonatecomponents: an evaluation of original seawater-chemistry proxies. Chemical Geology 204, 23–44.
    Brand, U., and Veizer, J., 1980, Chemical diagenesis of a multi-component carbonate system-1.: Trace elements Journal Sedimentary Petrol, v. 50, p. 1219-1237.
    Brand, U., Logan, A., Hiller, N., and Richardson, J., 2003, Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography: Chemical Geology, v. 198, p. 305-334.
    Broecker, W. S., and Peng, T. H., 1982, Tracers in the Sea: Palisades, New York, Lamont Doherty Earth Observatory, 690 p.
    Bruckschen, P., and Veizer, J., 1997, Oxygen and carbon isotopic composition of Dinantian brachiopods: Paleoenvironmental implications for the Lower Carboniferous of western Europe: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 132, p. 243-264.
    Bruckschen, P., Oesmann, S., and Veizer, J., 1999, Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics: Chemical Geology, v. 161, p. 127-163.
    Burton, E. A. and Walter, L. M., 1987, Relative precipitateon rwtes of aragonite and Mg calcite from seawater: Temperature or carbonate ion control: Geology, v. 15, p. 111-114.
    Caputo, M. V., and Crowell, J. C., 1985, Migration of glacial centers across Gondwana during Paleozoic Era: Geological Society of America Bulletin, v. 96, no. 8, p. 1020-1036.
    Coplen, T. B., and Schlanger, S. O., 1973, Oxygen and carbon isotope studies of carbonate sediments from Site 167, Magellan Rise, Leg 17: Initial Reports of the Deep Sea Drilling Project, no. 17, p. 505-509.
    Craig, H., and Gordon, L.I., 1965, Isotopic oceanography;deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in Symposium on marine geochemistry, 1964: Occasional Pubblication Narragansett Marine Laboratory, University of Rhode Island, p. 277-234.
    Crowell J C and Frakes L A. 1971, Late Paleozoic glaciation: Part IV, Australia. Geological Society of America Bulletin, 82(9): 2515-2540.
    Crowell J C. 1978, Gondwanan glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, 278(10): 1345-1372.
    Crowell, J. C., 1999. Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System. Geological Society of America, Memoirs, 192.
    Crowley, T. J., 1983, The geologic record of climatic change: Reviews of Geophysics and space Physics, v.21, No.4, p.828-877.
    Crowley, T. J., 1994, Pangean climates, in Klein, G. D., ed., Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a super continent: Geological Society of America Specil Paper 288, p. 25-39.
    Dwyer, G.S., Cronin, T.M., Baker, P.A., Raymo, M.E., Buzas, J.S., Correge, T., 1995. North
    Elderfield, H., Ganssen, G., 2000. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442–445.
    Elderfield, H., Gieskes, J. M., Baker, P. A., Oldfield, R. K., Hawkesworth, C. J., and Miller, R., 1982, 87Sr/88Sr and 18O/16O ratios, interstitial water chemistry and diagenesis in deep-sea carbonate sediments of the Ontong Java Plateau: Geochimica et Cosmochimica Acta, v. 46, no. 11, p. 2259-2268.
    Epstein, S., and Mayeda, 1953, Variation of O18 content of waters from nature sources:Geochimica et Cosmochimica Acta, v.4, p.213-224.
    Falcon-Lang, H.J., 1999. The early Carboniferous (Courceyan–Arundian) monsoonal climate of the British Isles: evidence from growth rings in fossil woods. Geological Magazine 136, 177–187.
    Fielding, C., R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T., and Roberts, J., 2008, Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime: Journal of the Geological Society, London, v. 165.
    Frakes L A and Crowell J C. Late Paleozoic glaciation: I, South America. Geological Society of America Bulletin, 1969, 80(6): 1007-1042.

    Frakes L A and Crowell J C. Late Paleozoic glaciation: II, Africa exclusive of the Karroo Basin. Geological Society of America Bulletin, 1970, 81(8): 2261-2286.
    Frakes L A, Kemp E M, and Crowell J C. Late Paleozoic glaciation: Part VI, Asia. Geological Society of America Bulletin, 1975, 86(4): 454-464.
    Frakes L A, Matthews J L and Crowell J C. Late Paleozoic glaciation: Part III, 
Antarctica. Geological Society of America Bulletin, 1971, 82(6): 1581-1604
    Frakes, L. A., Francis, J. E. & Syktus, J. I. 1992. Climate Modes of the Pha- nerozoic. Cambridge University Press, Cambridge.
    Frank, T. D., and Lohmann, K. C., 1996, Diagenesis of fibrous magnesian calcite marine cement: Implications for the interpretation of δ18O and δ13C values of ancient equivalents: Geochimica et Cosmochimica Acta, v. 60, no. 13, p. 2427-2436.
    Friedli, H., Loetscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B., 1986, Ice core record of the 13C/12C ratio of atmospheric CO2 in the past tow centuries: Nature, v. 324. p237-238.
    Gibshman N B, and D V Baranova, 2007, Foraminifera Janischewskina and ‘Millerella’: 
their evolutionary pattern and biostratigraphic potential. In: Wong T E, ed. Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy: Utrecht, the Netherlands, 10-16 August 2003. Edita Pub House of the Royal, p175-177.
    Grossman, E. L., 1994, The carbon and oxygen isotopic record during the evolution of Pangea: Carboniferous to Triassic, in Klein, G, D,. ed., Pangea: Paleoclimate, tectonics, and sedimentation during accretion, Zenith, and breakup of a supercontinent: Geological Society of America Special Paper 288, p. 207-228.
    Grossman, E. L., Mii, H. S., and Yancey, T. E., 1993, Stable isotopes in Late Pennsylvanian brachiopods from the United States: Implications for Carboniferous paleo- ceanography: Geological Society of America Bulletin, v. 105, p. 1284–1296.
    Grossman, E. L., Mii, H. S., Zhang, C. l., and Yancey, T. E., 1996, Chemical variation in Pennsylvanian brachiopod shells; diagenetic, taxonomic, microstructural, and seasonal effects: Journal of Sedimentary Research, v. 66, no. 5, p. 1011-1022.
    Grossman, E. L., Zhang C., and Yancey, T. E., 1991, Stable isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas: Geological Society of America Bulletin, v.103, p.953-965
    Grossman, E.L., Bruckschen, P., Mii, H.S., Chuvashov, B.I., Yancey, T.E., Veizer, J., 2002. Carboniferous paleoclimate and global change: evidence from the Russian Platform. In: Carboniferous Stratigraphy and Paleogeography in Eurasia. Institute of Geology and Geochemistry, Russian Academy of Sciences. Urals Branch, Ekaterinburg, p. 61–71. http://geoweb.tamu.edu/faculty/grossman/EGpubs.html.
    Grossman, E.L., Yancey, T., Jones, T., Bruckschen, P., Chuvashov, B., Mazzullo, S., and Mii, H., 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 222-233.
    Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L., 1994, Tropical temperature variations since 20,000 years ago; modulating interhemispheric climate change: Science, v. 263, no. 5147, p. 663-665.
    Habermann, D., Neuser, R.D., and Richter, D.K., 1996, Ree-activated cathodoluminescence of calcite and dolomite: High resolution spectrometric analysis of CL emission (HRS-CL): Sedimentary Geology., v. 101, p. 1-7.
    Hays, P. D., and Grossman, E. T., 1991, Oxygen isotope in meteoric calcite cements as indicators of continental climate: Geology, v.19, p.441-444.
    Hughes, M.K., Schweingruber, F.H., Cartwright, D., and Kelly, P.M., 1984, July/August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data: Nature, v. 308, p. 341-344.
    Isbell, J. L., Miller, M. F., Wolfe, K. L. & Lenaker, P. A. 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan, M. A. & Archer, A. A. (eds) Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America, Special Papers, 370, 5–24.
    Ivany, L.C., and Runnegar, B., 2010, Early Permian seasonality from bivalve δ18O and implications for the oxygen isotopic composition of seawater: Geology, v.38, p.1027-1030.
    John r. Groves, Wang Yue, Qi YuPing, Barry C. Richards, Katsumi Ueno, and Wang Xiang Dong., 2012, Foraminiferal biostratigraphy of the Visean–Serpukhovian (Mississippian) boundary interval at slope and platform sections in southern Guizhou (South China): Journal of paleoclimatology, v.86, no. 5, p753-774
    Kiehl, J.T., and Shields, C.A., 2005, Climate simulation of the latest Permian: Implications for mass extinction: Geology, v. 33, p. 757-760.
    Kieth, M. L., and Weber, J. N., 1964, Carbon and oxygen isotopic composition of selected limestone and fossils: Geochimica et Cosmochimica Acta, v.28, p.1787-1816.
    Klein, R.T., Fricke, H.C., Purton, L.M.A., Brasier, M.D., Andreasson, F.P., 1997. Winter and summer temperatures of the early middle Eocene of France from Turritella δ18O profiles; discussions and reply. Geology 25, 957–960.
    Klein, R.T., Lohmann, K.C., Thayer, C.W., 1996. Bivalve skeletons record sea-surface temperature and à18O via Mg/ Ca and 18O/16O ratios. Geology 24, 415–418.

    Lear, C.H., Elderfield, H., Wilson, P.A., 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272.
    Lear, C.H., Rosenthal, Y., Slowey, N., 2002. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochimica et Cosmochimica Acta 66, 3375–3387.
    Lear, C.H., Rosenthal, Y., Slowey, N., 2002. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochimica et Cosmochimica Acta 66, 3375–3387.
    Lorens, R. B., 1981, Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate: Geochimica et Cosmochimica Acta, v.45, p.553-561.
    Lowenstam, H.A., 1961. Mineralogy, 18O/16O ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans. Journal of Geology 69, 241–260.
    Machel, H. G., 1985, Cathodoluminescence in calcite and dolomite and its chemical interpretation: Geoscience Canada, v. 12, p. 139-147.
    Machel, H.G., Mason, R.A., Mariano, A.N., and Mucci, A., 1991, Causes and emission of luminescence in calcite and dolomite. In Barker, C.E., Kopp, O.C (Eds.), Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, v. SEPM Short Course,v.25, p. 9-25.
    Magaritz, M., Anderson, R. Y., Holser, W. T., Saltzman, E. S., and Garber, J., 1983, Isotope shifts in the Late Permain of the Delaware Basin, Texas, precisely timed by varied sediments: Earth and Planetary Science Letters, v.66, p.111-124.
    Maggie Cusack, Alberto Pérez-Huerta, Markus Janousch, Adrian A. Finch., 2008, Magnesium in the lattice of calcite-shelled brachiopods.: Chemical Geology 257, p. 59-64.
    Maider Armendáriz, Idoia Rosales, Cecilio Quesada, 2008, Oxygen isotope and Mg/Ca composition of Late Viséan (Mississippian) brachiopod shells from SW Iberia: Palaeoclimatic and palaeogeographic
implications in northern Gondwana: Palaeogeography, Palaeoclimatology, Palaeoecology, v.268, p.65–79
    Maier, C., Felis, T., Pätzold, J., and Bak, R.P.M., 2004, Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the coral genus Porites: Marine Geology, v. 207, p. 193-208.
    Marshall, J.D., Brenchley, P.J., Mason, P., Wolff, G.A., Astini, R.A., Hints, L., Meidla, T., 1997. Global carbon isotopic events associated with mass extinction and glaciation in the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 195–210.
    Matter, A., Douglas, R. G., and Perch-Nielsen, K., 1975, Fossil preservation, geochemistry, and diagenesis of pelagic carbonates from Shatsky Rise, Northwest Pacific: Initial Reports of the Deep Sea Drilling Project, v. 32, p. 891-921.
    McArthur, J.M., Donovan, D.T., Thirlwall, M.F., Fouke, B.W., Mattey, D., 2000. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Science Letters 179, 269–285.

    McArthur, J.M., Doyle, P., Leng, M.J., Reeves, K., Williams, C.T., García-Sánchez, R., Howarth, R.J., 2007a. Testing palaeo-environmental proxies in Jurassic belemnites: Mg/Ca, Sr/Ca, Na/Ca, δ18O and δ13C. Palaeogeography, Palaeoclimatology, Palaeoe- cology 252, 464–480.
    McArthur, J.M., Janssen, N.M.M., Reboulet, S., Leng, M.J., Thirlwall, M.F., van de Schootbrugge, B., 2007b. Palaeotemperatures, polar ice-volume, and isotope strati- graphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr); the Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeography, Palaeoclimatology, Palaeoecology 248, 391–430.
    Menning M, Alekseev A S, Chuvashov B I. Global time scale and regional 
stratigraphic reference scales of Central and West Europe, East Europe, Tethys, south China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP 2003). Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240: 318-372.
    Meyers, W. J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico: Journal of Sedimentary Petrology, v. 44, p. 837-861.
    Mii, H. S., and Grossman, E. L., 1994, Late Pennsylvanian seasonality reflected in the 18O and elemental composition of a brachiopod shell: Geology, v. 22, no. 7, p. 661-664.
    Mii, H. S., Grossman, E. L., and Yancey, T. E., 1997, Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen; global change or diagenetic artifact?: Geology, v. 25, no. 3, p. 227-230.
    Mii, H. S., Grossman, E. L., and Yancey, T. E., 1999, Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation: Geological Society of America Bulletin, v. 111, no. 7, p. 960-973.
    Mii, H. S., Grossman, E. L., Yancey, T. E., Chuvashov, B., Egorov, A., and Yegorov, A., 2001, Isotopic records of brachiopod shells from the Russian Platform; evidence for the onset of Mid-Carboniferous glaciation: Chemical Geology, v. 175, no. 1-2, p. 133-147.
    Mii, H. S., Grossman, E. L., Yancey, T. E., Chuvashov, B., Egorov, A., and Yegorov, A., 2001, Isotopic records of brachiopod shells from the Russian Platform; evidence for the onset of Mid-Carboniferous glaciation: Chemical Geology, v. 175, no. 1-2, p. 133-147.
    Mii, H.S., Grossman, E.L., 1994. Late Pennsylvanian seasonality reflected in the 18O and elemental composition of a brachiopod shell. Geology 22, 661–664.
    Mii, H.S., Grossman, E.L., Yancey, T.E., 1999. Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America Bulletin 111, 960–973.
    Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., Isdale, P.J., 1996. Mg/Ca thermometry in coral skeletons. Science 274, 961–963.
    Montañez, I.P., 2002. Biological skeletal carbonate records changes in major-ion chemistry of paleo-oceans. PNAS 99, 15852–15854.
    Morrison, J.O., Brand, U., 1986. Geochemistry of recent marine invertebrates.: Geoscience Canada 13, 237–254.
    Mucci, A, 1987, Influence of temperature on the compositeon of magnesium calcite overgrowths precipated from seawater: Geochimica et Cosmochimica Acta, v.51, p, 1977-1984
    O’Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1969, Oxygen isotope fractionation in divalent metal carbonates:Journal of Chemical Physics, v.51, p.5547-5558.
    Pérez-Huerta, A., Cusack, M., Jeffries, T.E., Williams, C.T., 2008. High resolution distribution of magnesium and strontium and the evaluation of Mg/Ca thermometry in Recent brachiopod shells. Chemical Geology 247, 229–241.
    Pierson, B. J., 1981, The control of cathodoluminescence in dolomite by iron and manganese: Sedimentology, v. 28, p. 601-610.
    Popp, B. N., Anderson, T. F., and Sandberg, P. A., 1986, Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones: Geological Society of America Bulletin, v. 97, no. 10, p. 1262-1269.
    Popp, B.N., Anderson, T.F., Sandberg, P.A., 1986a. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society of America Bulletin 97, 1262–1269.
    Railsback, L. B., Anderson, T. F., Ackerly, S. C., and Ciane, J. L., 1989, Paleoceanographic modeling of temperature-salinity profiles from stable isotope data: Paleoceanography, v.4, p.585-591.
    Raymond C. Moore, Cecil G. Lalicker, Alfred G. Fischlr, 1974, Invertebrate Fossils, New York : McGraw-Hill, p.197-267
    Retallack, G.J., Jahren, A.H., 2008. Methane release from igneous intrusion of coal during Late Permian extinction events: The Journal of Geology, vol. 116, p1-20.
    Rosales, I., Quesada, S., Robles, S., 2004a. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque- Cantabrian basin, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 203, p253–275.
    Rosales, I., Robles, S., Quesada, S., 2004b. Elemental and oxygen isotope composition of Early Jurassic belemnites: salinity vs. temperature signals.: Journal of Sedimentary Research 74, 343–355.
    Ruddiman, W. F., 2000, Earth’s Climate - past and future:W. H. Freeman and Company, New York, 441p.
    Rush, P.F., and Chafetz, H.S., 1990, Fabric-retentive, non-luminescent brachiopods as indicators of original 13C and 18O composition: a test: Journal of Sedimentary Petrology, v. 60, p. 968-981.
    Savin, S. M., 1977, The history the Earth’s surface temperature during the past 100 million year:Annual Review of Earth and Planetary Sciences, v.5, p.319-355.
    Schrag, D. P., Hampt, G., and Murray, D. W., 1996, Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean: Science, v. 272, no. 5270, p. 1930-1932.
    Shackleton, N. J., 1977, The oxygen isotope stratigraphic record of the Late Pleistocene: Philosophical Transactions of the Royal Society of London B, v.280. p. 169-182.
    Shields, G.A., Carden, G.A.F., Veizer, J., Meidla, T., Rong, J.Y., Li, R.Y., 2003. Sr, C and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta 67, 2005–2025.
    Singh, G., and Luly, J., 1991, Changes in vegetation and seasonal climate since the last full glacial at Lake Frome, South Australia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 84, p. 75-79.
    Veevers, J. J. & Powell, C. McA. 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive–regressive depositional sequences in Euramerica. Geological Society of America Bulletin, 98, 475–487.
    Veizer, J., 1983, Chemical diagenesis of carbonates: theory and application of trace element technique. In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S. (Eds.), Stable Isotopes in Sedimentary Geology, Society of Economic Palaeontologists and Mineralogists Short Course, vol. 10, pp. 3/1 –3/100. Tulsa.
    Veizer, J., and Hoefs, J., 1976, The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks: Geochimica et Cosmochimica Acta., v.40, p.1387-1395.
    Veizer, J., Fritz, P., and Jones, B., 1986, Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans: Geochimica et Cosmochimica Acta, v. 50, p. 1679–1696.
    Wang, H., 1998, Oxgen isotope records of Carboniferous seasonality on the Russian Platform, M. S. Thesis: Texas A & M University, U.S.A., 51p.
    Wanless H R and Shepard F P. Sea level and climatic changes related to late Paleozoic cycles. Bulletin of the Geological Society of America, 1936, 47(8):1177-1206.
    Wright, V.P., 1990. Equatorial aridity and climatic oscillations during the early Carboniferous, southern Britain. Journal of the Geological Society 147, 359–363.
    丁文江, 1931, 中國文明的形成, 上海, 太平洋國際學會.
    小林貞一, 1956, 東亞地質上卷, 朝倉書店.
    王向東, 金玉玕, 2000, 石炭紀年代地層學研究概況, 地層學雜誌 第24卷 第2期
    王鈺, 金玉玕, 方大衛, 1966, 腕足動物化石: 北京, 科學出版社, 693 p.
    吴祥和. 国际石炭系维宪阶-谢尔普霍夫阶界线层型候选剖面综合研究. 见: 第三届全国地层委员会, 编. 中国主要断代地层建阶研究报告. 北京: 地质出 版社, 2008. 287-323.
    林巍, 2010, 黔中雅水維憲階-謝爾普霍夫階界線層的四射珊瑚 中國科學院南京地質古生物研究所碩士論文, 共73頁.
    陳敘琬, 2001, 從早石碳紀腕足動物化石之氧同位素記錄看中國華南地區古溫度特性, 國立臺灣師範大學碩士論文, 共91頁
    貴州省地質礦產局, 1984, 貴州區域地質誌, 北京, 地質出版社, 698 p.
    http://cpgeosystems.com/mollglobe.html
    http://www.scotese.com

    下載圖示
    QR CODE