研究生: |
陳世驊 Chen, Shih-Hua |
---|---|
論文名稱: |
經過兩階段選取的存活資料的統計推論 Statistical inference for failure time data from a two-phase probability-dependent sampling scheme |
指導教授: |
呂翠珊
Lu, Tsui-Shan |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 兩階段機率依賴採樣設計 、存活資料 、加速失效模型 、最佳設計 |
英文關鍵詞: | two-phase probability dependent sampling, failure time data, accelerated failure time model, optimal design |
DOI URL: | http://doi.org/10.6345/NTNU202000826 |
論文種類: | 學術論文 |
相關次數: | 點閱:221 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於增進估計的效益,多階段取樣實驗是其中一種方式。本研究考慮對於存活數據資料採用兩階段機率依賴採樣設計,其中第一階段為簡單隨機採樣,第二階段為機率依賴採樣。此方法目的為在有限的經費或是資源中選取更有資訊的樣本。模擬研究的估計結果會與相同樣本數的簡單隨機採樣以及結果依賴採樣的估計做比較。模擬結果顯示,兩階段機率依賴採樣的設計方法的估計結果比其他兩種估計方法具有更好的性質。此外我們也發展出在固定樣本數的情況下,兩階段機率依賴採樣的最佳設計。最後,我們使用研究的結果去分析巴瑟爾頓健康研究。
It has been shown that multiphased designs is one of the approaches to enhance study efficiency. In this thesis, we consider a two-phase probability dependent sampling scheme for failure time data. Where one selects a simple random sample at the first phase and targets more informative subjects based on a certain probability at the second phase. Simulation studies show that the proposed estimator performed the two competitive estimators, one from a simple random sample of the same sample size and the other from the outcome-dependent sampling design. We also develop the optimal allocation of the subsamples for the two-phase probability dependent sampling scheme under the fixed sample size. We then apply our proposed design and estimator to the Busseltion Health Study.
Bibliography
[1] Brown, B. M., and Wang, Y.-G. Standard errors and covariance matrices for smoothed rank estimators. Biometrika 92, 1 (2005), 149-158.
[2] Brown, B. M., and Wang, Y.-G. Induced smoothing for rank regression with censored survival times. Statistics
in Medicine 26, 4 (2007), 828-836.
[3] Chatterjee, N., Chen, Y.-H., and Breslow, N. E. A pseudo-score estimator for regression problems with two-phase sampling. Journal of the American Statistical Association 98, 461(Mar.,2003) (2003), 158-168.
[4] Chiou, H., Kang, S., and Yan, J. Fitting accelerated
failure time models in routine survival analysis with r
package aftgee. Journal of Statistical Software 61, 11 (2014), 1-23.
[5] Chiou, H., Kang, S., and Yan, J. Semiparametric accelerated failure time modeling for clustered failure times from stratied sampling. Journal of the American Statistical Association 110 (2015), 621-629.
[6] Ding, J., Zhou, H., Liu, Y., Cai, J., and
Longnecker, M. p. Estimating effect of environmental contaminants on women's subfecundity for the moba study
data with an outcome-dependent sampling scheme. Biostatistics 15, 4 (2014), 636-650.
[7] Gehan, E. A. A generalized wilcoxon test for comparing
arbitrarily singly-censored samples. Biometrika 52, 1/2 (1965), 203-233.
[8] Hajek, J. Limit theorems for a simple random sampling
from a finite population. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences 5 (1960), 361-374.
[9] JIN, Z., LIN, D. Y., and YING, Z. Rank regression analysis of multivariate failure time data based on marginal linear models. Journal of Statistic 33 (2006), 1-23.
[10] Johnson, L. M., and Strawderman, R. L. Induced smoothing for the semiparametric accelerated failure time
model: asymptotics and extensions to clustered data. Biometrika 96 (2009), 577-590.
[11] Kang, S., and Cai, J. Marginal hazards model for case-cohort studies with multiple disease outcomes. Biometrika 96 (2009), 887-901.
[12] Kong, L., Cai, J., and Sen, P. K. Asymptotic results
for fitting semi-parametric transformation models to failure time data from case-cohort studies. Statistica Sinica 16 (2009), 135-151.
[13] PRENTICE, R. L. Linear rank tests with right censored
data. Biometrika 65, 1 (1978), 167-180.
[14] Serfling, R. J. Approximation theorems of mathematical statistics. Statistics,(Vol. 162) (2009), John Wiley & Sons.
[15] Song, R., Zhou, H., and Kosorok, M. R. On semiparametric efficient inference for two-stage outcome dependent sampling with a continuous outcome. Biometrika 96, 1 (2009), 221-228.
[16] Weaver, M. A. Semiparametric methods for continuous outcome regression models with covariate data from an outcome dependent subsample.
[17] Ying, Z. A large sample study of rank estimation
for censored regression data. The Annals of Statistics
21 (1993), 76-99.
[18] Yu, J., Liu, Y., Sandler, D. P., and Zhou, H. Statistical inference for the additive hazards model under
outcome-dependent sampling. Statistical Society of Canada
43, 3 (2001), 436-453.
[19] Yu, J., Liu, Y., Sandler, D. P., and Zhou, H. Statistical inference for the additive hazards model under
outcome-dependent sampling. The Canadian Journal of Statistics 43 (2015), 436-453.
[20] Zhou, H., Song, R., Wu, Y., and Qin, J. Statistical
inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 1 (2011),
194-202.
[21] Zhou, H., and Weaver, M. A. An estimated likelihood method for continuous outcome regression models with outcome-dependent sampling. Journal of the American Statistical Association 100, 470 (2005), 459-469.
[22] Zhou, H., Weaver, M. A., Qin, J., Longnecker, M., and
Wang, M. C. A semiparametric empirical likelihood method
for data from an outcome-dependent sampling scheme with a
continuous outcome. Biometrics 58, 2 (2002), 413-421.
[23] Zhou, H., Xu, W., Zeng, D., and Cai, J. Semiparametric inference for data with a continuous outcome from a two-phase probability-dependent sampling
scheme. Royal Statistical Society Soc.B 76 (2014),
197-215.
[24] Zhu, H., and Wang, M.-C. Nonparametric inference on
bivariate survival data with interval sampling:
association estimation and testing. Biometrika 101, 3 (2014), 519533.