簡易檢索 / 詳目顯示

研究生: 呂冠見
Kuan-Chien Lu
論文名稱: 一個對於模糊隨機變數的強大數法則和模糊馬亭戈的收斂定理
A Strong Laws of Large Numbers for Fuzzy Random Variables and Convergence Theorems for Martingales
指導教授: 王建都
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 40
中文關鍵詞: 模糊集合;Hausdorff 距離模糊隨機變數的強大數法則
英文關鍵詞: Fuzzy sets, Hausdorff metric, Strong law of large numbers for fuzzy random variables
論文種類: 學術論文
相關次數: 點閱:316下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於可測函數在不同空間的大數法則,已經有被建構很多版本在文獻中.
    在這篇論文中,我們證明了模糊隨機變數在一個非分離度量空間的大數法則 (沒有假設相同分配).此外我們也介紹模糊馬亭戈,模糊子馬亭戈,和模糊超馬亭戈.我們最後證明一些關於模糊子馬亭戈的收斂結果.

    Many versions of the strong law of large
    numbers have been established in the literature for measurable
    functions taking values on different spaces. In this paper, we
    prove a strong law of large numbers (it is not assumed to be
    identically distributed) for fuzzy random variables on a
    nonseparable metric space. Further, fuzzy martingales are
    introduced, as well as fuzzy submartingales and supermartingales.
    We prove some convergence results for fuzzy submartingales.

    Abstract-----------------------------------1 1 Preliminaries and Notion-----------------2 1.1 Fuzzy set------------------------------8 1.2 Random compact set and Fuzzy Random 1.3 Support function----------------------22 2 A Strong of Large Numbers for Fuzzy Random-27 3 Convergence Theorem for fuzzy martingale--34 References---------------------------------39

    [1] 陳慶瑞, 巴納赫空間下模糊隨機變數的強大數法則與中央極限定理,
    國立台灣師範大學, 1995.
    [2] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965) 1-12.
    [3] Z. Artstein, and R. A. Vitale, A strong law of large
    numbers for random compact sets. Ann.Probab. 3 (1975) 879-882.
    [4] Z. Artstein, On the calculus of
    set valued-functions, Indiana Univ. Math. 24 (1974), 433-441.
    [5] C. L. Byrne, Remarks on the set valued integrals of Debreu
    and Aumann, J. Math. Anal. appl. 62 (1978), 243-246.
    [6] H. T. Banks and M. Jacobs, A differential calculus for
    Multifunctions, J. Math. Anal. Appl. 29(1970), 246-272.
    [7] A. Colubi, Lopez-Diaz, M., Dominguez-Menchero, Gil, A
    generalized Strong Law of Large Numbers. Probab. Theory
    Related Fields 114 (1999), 401-417.
    [8] C. Cambridge Philos.
    N.S. Papageorgiou, On the Theory of Banach space valued
    multifunctions 2. Set Valued martingales
    and set valued measures, J. Multivariate
    Anal. 17 (1985) 207-227.
    [9] R. Durrett, Probability, Theory and Examples, second ed.,
    Duxbury Press, 1995. $[10]$ G. Debreu, Integration of
    correspondence, in Proc. Fifth Berkeley Symp. Math.
    Statist. Prob., p.351-372, Univ. of California Press, Berkeley,
    1966.
    [11] Hiai, F., and Umegaki, H. Integrals, conditional
    expectations and martingales
    of multivalued functions. J. Multivariate Anal. 7 (1977)149-182.
    [12] F. Hia"{l}, Convergence of conditional expectations and
    strong laws of large numbers for multivalued random variables, Trans. Amer. Math. Soc. 291 (2)
    (1985) 613-627.
    [13] H. Inoue, A strong law of large numbers
    for fuzzy random sets. Fuzzy Set and
    Systems 41 (1991), 285-291.
    [14] E.P.Klement, M.L.Puri, and D.A.Ralescu, Limit theorems for
    fuzzy random variables, Proc. Roy.
    Statist. Soc. London A 407 (1986),171-182.
    [15] H.Kwakernaak,
    Fuzzy random variables-I. Definitions and theorems, Inform. Sci.
    15 (1978)1-29.
    [16] C. Kuratowski, Topology vol. I, Academic press, New
    York,(1966).
    [17] K$ddot{o}$rner, R., On the variance of
    fuzzy random variables. Fuzzy Set and Systems
    92(1997),par
    oindenthspace{8mm}83-93.
    [18] Kim and Joo, Topological Properties on the space of fuzzy
    sets, J. Math. Anal. Appl.par
    oindenthspace{8mm}246, (2000) 576-590.
    [19] G. Krupa, Convergence
    of unbounded multivalued supermartingales in the Mosco and Slice
    topologies, J. Convex Anal. 5 (1) (1998) 187-198.
    [20] M.
    Lopez-Diaz and M. Gil, Approximating integrably bounded fuzzy
    random variables in terms of the generalized Hausdorff metric, Inform. Sci.
    104 (1998) , 279-291.
    [21] R. Lowen, Convex fuzzy sets, Fuzzy Sets and Systems 3
    (1980), 291-310.
    [22] S. Li, Y. Ogura, Convergence of set valued sub- and
    supermartingales in the par
    oindenthspace{8mm} Kurtowski-Mosco
    Sense, Ann. Probab. 26 (3) (1998) 1384-1402.
    [23] R. G. Laha, V.K.Rohatgi, Probability theory, Wiley, New York,1979.
    [24] N.N. Lyashenko, On limit theorems for sums of independent compact random subsets in the Euclidean space, Zap, Nauchn. Sem.
    Leningrad Otdel. Math. Inst. Steklov 85, 1979 113-128.
    [25] G. Matheron, Random Sets and Integral Geometry, Wiley, New
    York, 1975.
    [26] ILy. S. Molchanov, On strong laws of large
    numbers for random upper semicontinuous functions, J. Math. Anal. Appl. 235 (1999),349-355.
    [27] Madan L. Puri , Convergence theorem for fuzzy
    martingales,J. Math. Anal. Appl. 160
    (1991),107-122.
    [28] M. L. Puri and D. A. Ralescu, Fuzzy
    random variables, J. Math. Anal. Appl.114
    (1986), 409-422.
    [29] J. B. Prolla, Approximation of continuous convex-cone-valued functions by monotone operators,Studia Math. 102 (1992), 175-192.
    [30] M. Puri and D. Raldscu, Differentials of fuzzy functions,
    J. Math. Anal. Appl. 91 (1983),
    552-558
    [31] M. L. Puri, D. A. Ralescu, Limit theorems for random
    compact sets in Banach spaces,par
    oindenthspace{8mm}Math. Proc.
    Cambridge Philos. Soc. 97 (1985) 151-158.
    [32] H.R$dot{a}$dstr$ddot{o}$m, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952) 165-169.
    [33] R. T. Rockafellar, Convex Analysis, Princeton University
    Press, Princeton, NJ,
    1970.
    [34] N. M. Stojakovic, Fuzzy conditional expectation, Fuzzy Sets
    and Systems 52 (1992),par
    oindenthspace{8mm}53-60. $[35]$
    A.V.Skorokhod, Limit theorems for stochastic processes,Theory
    Probab.Appl.1 (1956),
    par
    oindenthspace{8mm}261-290.
    [36] R. A. Vitale, Approximations of convex set-valued
    functions, J. Approx. par
    oindenthspace{8mm}Theory 26 (1979)
    301-316.
    [37] Z. P. Wang, X.H. Xue, On convergence and closedness of
    multivalued martingales, Trans. par
    oindenthspace{8mm}Amer.
    Math. Soc. 341 (2) (1994)
    807-827.
    [38] X. Xue, X. Wang, and L.Wu, On the convergence and
    representation of random fuzzy number integrals, Fuzzy Sets and Systems 103 (1999), 115-125.
    [39] Yuhu Feng, Convergence theorems for fuzzy random variables
    and fuzzy martingales, Fuzzy Set and Systems
    103(1999) 435-441.
    [40] L. A. Zadeh, The concept of a linguistic variable and its
    applications in approximate reasoning,Inform. Sci. 8:199-251, 8:301-357; 9:43-80(1975).
    [41] L. A. Zadeh, Fuzzy sets. Information and Control 8 (1965) 238-353.

    QR CODE