簡易檢索 / 詳目顯示

研究生: 張郁傑
Yu-Chieh Chang
論文名稱: 以內部模型原理為基礎之控制器初始值補償及其於雙軸機械手臂之應用
Initial Value Compensation for Internal Model Principle-Based Controllers and Its Application to a Two-Link Robotic Manipulator
指導教授: 呂有勝
Lu, Yu-Sheng
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 89
中文關鍵詞: 內部模型原理為基礎之控制器超越量振盪初始值補償雙軸機械手臂
英文關鍵詞: internal model principle based controllers, overshoot, oscillation, initial value compensation, two link robot manipulator
論文種類: 學術論文
相關次數: 點閱:168下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機械手臂為多關節機構,在各軸皆具有致動器,其動力模式為非線性藕合多變數系統,運用範圍涵蓋物件搬運、噴漆、點焊、弧焊等;本文針對機械手臂之定位和循軌控制,提出以內部模型原理為基礎之控制器初始值補償(Initial Value Compensation, IVC)。改善傳統內部模型為基礎之控制器會有超越量(Overshoot)或振盪(Oscillation)的問題,設計內部模型原理為基礎之控制器具有抑制已知干擾模型的優點,透過IVC之設計可降低超越量或振盪的產生,大大地提升控制器的性能。
    在控制平台架構上,採用美國德州儀器公司(Texas Instruments, TI)所生產之TMS320C6713 DSP搭配具FPGA之自製擴充子板為實驗平台。在FPGA方面,以硬體描述語言(VHDL)撰寫Encoder、 A/D與D/A之界面程式;在控制器實現上,利用TI所提供的Code Composer Studio (CCS)環境下以C/C++撰寫控制器程式並下載到DSP上執行。整體控制架構經由雙軸機械手臂定位和追循圓軌跡予以驗證,其結果顯示將可有效改善暫態時產生超越量或振盪問題,以及更佳的抑制外部干擾。

    Robotic manipulators contain actuators in each joint, each with nonlinear, coupling and variant parameter characteristics. Arc and spot welding, spray painting, milling and drilling are some applications of robotic manipulators. For positioning and trajectory tracking control, a method uisng Internal Model Principle-based (IMP-based) controllers with the Initial Value Compensation (IVC) is proposed in this thesis. Using IVC, the overshoot and oscillation problem in the IMP-based controllers has been improved.
    In the experimental setup, we utilize Texas instrument's TMS320C6713 DSP with an FPGA (Field-Programmable Gate Array) as our control kernel. Implementing control laws, we employ the C/C++ language as a tool. Moreover, we establish an interface to two shaft encoders, ADCs and DACs using hardware description language (VHDL). The experimental result shows that the proposed scheme improves the tracking performance and robustness against disturbance.

    摘 要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 論文架構 3 第二章 實驗系統描述 4 2.1 實體系統 4 2.1.1 系統架構簡介 4 2.1.2 系統之位置與速度回授[10],[11] 8 2.2 系統模型描述[12] 10 第三章 內部模型原理為基礎之控制器設計 12 3.1 內部模型原理為基礎之計算轉矩控制器 12 3.1.1 靜態計算轉矩控制器原理與設計 12 3.1.2 一階內部模型控制器之原理與設計 13 3.1.3 二階內部模型控制器之原理與設計 14 3.1.4 三階內部模型控制器之原理與設計 16 3.2 滑動模式控制 (SLIDING MODE CONTROL, SMC)[17] 18 3.2.1 滑動模式控制器於機械手臂設計原理 18 3.2.2 一階內部模型滑動模式控制器設計 21 3.2.3 二階內部模型滑動模式控制器設計 22 3.2.4 三階內部模型滑動模式控制器設計 23 第四章 內部模型原理為基礎之控制器初始值補償設計 25 4.1 初始值補償(INITIAL VALUE COMPENSATION, IVC)之設計原理 25 4.2 初始值補償應用於內部模型計算轉矩控制器設計 26 4.2.1 一階內部模型控制器之初始值補償 26 4.2.2 二階內部模型控制器之初始值補償 27 4.2.3 三階內部模型控制器之初始值補償 28 4.3 初始值補償應用於內部模型滑動模式控制器設計 30 4.3.1 二階內部模型滑動模式控制器之初始值補償 30 4.3.2 三階內部模型滑動模式控制器之初始值補償 31 4.4初始值補償於雙軸機械手臂之模擬結果 33 4.4.1 內部模型計算轉矩控制器之步階定位模擬結果 33 4.4.2 內部模型滑動模式控制器之步階定位模擬結果 39 第五章 雙軸機械手臂之控制實驗結果 50 5.1 內部模型原理為基礎之計算轉矩控制器之步階定位實驗結果 50 5.2 內部模型原理為基礎之滑動模式控制器之步階定位實驗結果 59 5.3 內部模型原理為基礎之計算轉矩控制器之追圓軌跡實驗結果 67 5.4 內部模型原理為基礎之滑動模式控制器之追圓軌跡實驗結果 77 第六章 結論 87 參考文獻 88

    [1] L. Y. Hang and M. Tomizuka, “Short Seeking by Multirate Digital Controllers for Computation Saving With Initial Value Adjustment,” IEEE/ASME Trans. Mechatronics, vol. 11, no. 1, pp. 9-16, 2006.
    [2] N. Hirose, M. Iwasaki, M. Kawafuku and H. Hirai, “Initial Value Compensation Using Additional Input for Semi-Closed Control Systems,” IEEE Trans. Industrial Electronics, vol. 56, no. 3, pp. 635-641, 2009.
    [3] N. Hirose, K. S. Safety, H. Kajima and M. Yamaoka, “Mode Switching Control for a Personal Mobility Robot based on Initial Value Compensation,” Proc. of Annual Conference on IEEE Industrial Electronics Society, pp. 1914-1919, 2010.
    [4] Y. Li, Y. Sun, C. Smith, L. Guo and W. Guo, “Optimization of Initial Value Compensation for Settle Control in Hard Disk Drivers,” IEEE Trans. Magnetics, vol. 41, no. 2, pp. 797-801, 2005.
    [5] J. Zhang, C. Du. and S. S. Ge, “A Novel Settling Controller for Dual-Stage Servo Systems,” IEEE Trans. Magnetics, vol. 44, no. 11, pp. 3757-3760, 2008.
    [6] J. W. Choi and S. C. Lee, “Antiwindup Strategy for PI-Type Speed Controller,” IEEE Trans. Industrial Electronics, vol. 56, no. 6, pp. 2039-2046, 2009.
    [7] T. Yamaguchi, H. Numasato and H. Hirai, “A Mode-Switching Control for Motion Control and Its Application to Disk Drives: Design of Optimal Mode-Switching Conditions,” IEEE/ASME Trans. Mechatronics, vol. 3, no. 3, pp. 202-209, 1998.
    [8] J. K. Seok, K. T. Kim and D. C. Lee, “Automatic Mode Switching of P/PI Speed Control for Industry Servo Drives Using Online Spectrum Analysis of Torque Command,” IEEE Trans. Industrial Electronics, vol. 54, no. 5, pp. 2642-2647, 2007.
    [9] 邱建瑋,運用滑動模式技術之雙軸機械手臂定位控制,碩士論文,國立雲林科技大學機械工程學系,雲林、台灣,2006。
    [10] 王炫文,高性能加速規之研製與無刷伺服系統之速度估測與干擾補償,碩士論文,國立雲林科技大學機械工程學系,雲林、台灣,2007。
    [11] 鄭兆閔,無刷伺服馬達之改良型PID控制與干擾補償碩士論文,國立雲林科技大學機械工程學系,雲林、台灣,2003。
    [12] 鄒家弘,雙軸機械手臂之模糊滑動模式控制,國立雲林科技大學機械工程學系,雲林、台灣,2009。
    [13] N. S. Nise, Control Systems Engineering, Wiley, New York, 2004.
    [14] B. A. Francis and W. M. Wonham, “The Internal Model Principle of Control Theory,” Automatica, vol. 12, no. 5, pp. 457-465, 1976.
    [15] R. C. Dorf and R. H. Bishop, Modern Control Systems, Prentice-Hall, New Jersey, 2008.
    [16] 詹順興,以內部模型為基礎之滑動模式控制於光碟機循軌之應用,國立雲林科技大學機械工程學系,雲林、台灣,2004。
    [17] Y. S. Lu and J. S. Chen, “Design of a global sliding mode controller for robot manipulator with robust tracking capability,” Proceedings of the National Science Council-Part A: Physical Science and Engineering, vol. 18, no. 5, pp. 463-476, Sep. 1994.

    下載圖示
    QR CODE