簡易檢索 / 詳目顯示

研究生: 陳建誠
Chen, Jian-Cheng
論文名稱: 一位生手師培師輔導在職數學教師設計臆測活動的專業成長:聚焦輔導策略演化的學習
Professional Growth of Novice Mathematics Teacher Educator-Researcher by Mentoring In-Service Mathematics Teachers in Designing Conjecturing Activities: Focusing on Learning through Evolution of Mentoring Strategies
指導教授: 林福來
Lin, Fou-Lai
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 251
中文關鍵詞: 生手師培師師培師的輔導策略師培師的專業成長設計為本專展發展臆測活動設計
英文關鍵詞: novice mathematics teacher educator, mentoring strategy, professional development of teacher educator, design-based professional development, design of conjecturing activities
論文種類: 學術論文
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臆測是數學思考的骨幹,學生參與臆測活動有助於數學能力的養成,教師學習設計臆測活動是落實臆測於課室教學的主要手段,而師培師規劃與實施臆測活動設計工作坊便是協助教師學習的關鍵支撐,因此,師培師如何規劃、如何實施及如何反思調整臆測活動設計工作坊是重要的研究問題。本篇研究探討一位參與教育部中央輔導團亮點基地計畫的生手師培師,如何透過行動研究法探索自己輔導學校數學教師設計臆測活動的專業成長,特別是聚焦在促進策略的演化。本研究的師培師透過行動研究探究輔導實作的成果便是專業學習,包含:(1)建構臆測活動設計工作坊的課程內容與實施方式;(2)察覺設計為本工作坊所容易引發師培師與教師張力並形成輔導問題;(3)因應輔導問題調整課程內容與實施方式並促成促進策略的演化:由內容學習為取向到學生學習為取在再到教師學習為取向;(4)認識教師參與設計為本工作坊的表現,包含設計臆測活動的能力、對學生學習的敏感度及學校專業學習社群的營造等;(5)反思設計為本專業發展工作坊規劃與實施的原則,包含設計為本的入口活動、進擊活動和回顧活動等。最後,研究者根據本行動研究結果,提出初任師培師的局部發展和設計為本教師專業發展兩方面的實作和研究之建議。

    Conjecturing is viewed as backbone of mathematical thinking, which suggests that students should engage in conjecturing activities for enhancing their mathematical competence in a comprehensive way. The key to enactment of conjecturing activities in classrooms is Mathematics Teachers’ (MTs) competence in designing such kinds of instructional activities. In this regard, how Mathematics Teacher Educator-Researchers (MTE-Rs) arrange, implement, and refine professional development programs to facilitate MTs in designing conjecturing tasks is of concern. This study reports professional growth of a novice mathematics teacher educator-researcher(MTE-R) evolved through mentoring in-service MTs in designing conjecturing activities. In particular, the study focuses on the evolution process of mentoring strategies that the novice MTE-R adopted and refined. By means of action research approach, professional growth of the novice MTE-R can be identified from five perspectives including (1) developing the program for facilitating in-service MTs in designing conjecturing tasks; (2) being aware of tensions and challenges encountered when facilitating the learning of MTs in the program; (3) refining the program and the strategies to facilitate the learning of MTs based on the tensions and challenged noticed, which can be generally described as the evolution from content-oriented to both student-centered and teacher-centered; (4) knowing how MTs learn from participating in design-based program in terms of MTs’ competence in designing conjecturing tasks, MTs’ sensitivity to student learning, and how MTs build up professional learning communities on school basis; (5) eliciting principles involving entry phase, attack phase and review phase for arranging and implementing design-based programs. On the basis of the results derived from the action research, this study further provides suggestions to research on professional growth of MTE-Rs, and to the implementation of design-based professional development programs for facilitating MTs’ learning.

    第一章、緒論 1 第一節、問題背景 1 壹、數學學習與教學現狀 1 貳、亮點基地計畫 3 叁、初任師培師的學習 5 第二節、研究目的與問題 9 壹、關於專業發展活動的張力 10 貳、關於師培師促進策略的演化 10 叁、關於師培師的專業學習 11 第三節、研究假設 12 壹、規劃階段的學習 12 貳、實作階段的學習 12 叁、反思階段的學習 12 第四節、名詞界定 14 壹、師培師 14 貳、師培師的輔導 14 叁、生手師培師 14 肆、設計為本專業發展 14 伍、師培師與研究者 15 陸、反思階段的學習 15 柒、促進策略 15 第二章、文獻探討 16 第一節、師培師的專業發展 16 壹、師培師的角色與任務 17 貳、師培師的學習內涵 19 1. 從知識向度來看 19 2. 從能力向度來看 21 3. 從師培力向度來看 24 4. 從情意向度來看 27 叁、師培師的學習方式 28 肆、師培師的發展 31 1. 實作取向的發展 31 2. 研究取向的發展 33 3. 師培力取向的發展 33 伍、設計為本教師專業發展 34 1. 教師是任務的解決者 34 2. 教師是任務的使用者 35 3. 教師是任務的設計者 35 陸、設計為本專業發展:師培師、教師與學生 37 柒、自我研究 40 第二節、數學臆測活動設計 47 壹、數學思考與臆測 47 貳、臆測的意義與功能 49 1. 猜想不一定是命題型式 49 2. 猜想是某種程度的相信 49 3. 猜想的真實性並不確定 49 叁、臆測與五股數學能力 51 1. 臆測與策略能力 54 2. 臆測與合適推理 55 3. 臆測與概念瞭解 57 肆、診斷概念教學設計 60 1. 選擇情境脈絡 61 2. 設計回饋機制 61 3. 反思與回顧 62 伍、形成臆測的認知類型 63 1. 離散的有限案例歸納形成臆測 64 2. 動態的有限案例歸納形成臆測 64 3. 類比形成臆測 65 4. 發想形成臆測 65 5. 知覺性臆測 66 陸、臆測活動設計起點及學習策略 66 1. 由錯誤敘述出發 67 2. 由正確敘述出發 67 3. 由學生提出的臆測出發 68 柒、程序性反駁模式 71 1. 導入錯誤命題 72 2. 確認學生理解命題 72 3. 鼓勵學生窮舉案例 73 4. 檢驗/展示數學式 73 5. 鼓勵學生產生臆測 73 捌、臆測活動設計原則 73 1. 觀察原則 73 2. 建構原則 74 3. 轉換原則 74 4. 反思原則 74 玖、課程規劃與實施要點 75 第三節、活動理論 77 壹、活動系統 77 貳、活動系統模式 78 参、活動系統在數學教育的應用 83 第三章、研究方法 88 第一節、研究背景 88 壹、設計為本專業發展研究 88 貳、亮點基地計畫 90 第二節、研究方法論 92 壹、行動研究法 92 貳、專業發展透過行動研究 93 第三節、研究對象與研究場域 95 壹、研究對象 95 貳、研究場域 96 第四節、研究設計與流程 98 壹、行動研究歷程架構 98 貳、初始循環的關鍵問題 100 参、初始循環的工作坊規劃 101 第五節、資料蒐集與分析 106 壹、資料蒐集 106 貳、資料分析 109 第四章、結果與討論 113 第一節、專業發展活動系統的張力 113 壹、專業發展活動的關鍵事件 113 一、校長對亮點基地計畫的期望 114 二、教師參與亮點基地計畫的動機 114 三、教師對工作方實施方式的要求 115 四、教師表現與研究者調整 116 貳、專業發展活動的張力 117 一、教師專業發展活動內的張力 118 1. 目標內的張力 118 2. 工具與社群、規則或分工間的張力 119 3. 目標與規則間的張力 119 二、師培師輔導活動內的張力 120 1. 工具與目標間的張力(1) 120 2. 工具與目標間的張力(2) 120 3. 工具與目標間的張力(3) 121 三、師培師活動與教師活動間的張力 121 1. 兩活動規則間的張力 121 2. 兩活動目標、規則與分工間的張力 122 3. 兩活動社群、規則與分工間的張力 122 第二節、師培師促進策略的演化 124 壹、內容學習階段取向 124 一、內容學習取向階段的設計意圖 125 1. 工作坊規劃 125 2. 工具的特徵 125 二、內容學習取向階段的實作反思 127 1. 促進策略的特徵 127 2. 活動系統與張力 129 貳、學生學習階段取向 130 一、學生學習取向階段的設計意圖 130 1. 工作坊規劃 130 2. 工具的特徵 130 二、學生學習取向階段的實作反思 134 1. 促進策略的特徵 134 2. 活動系統與張力 146 叁、教師學習階段取向 150 一、教師學習取向階段的設計意圖 150 1. 工作坊規劃 151 2. 工具的特徵 152 二、教師學習取向階段的實作反思 152 1. 促進策略的特徵 153 2. 活動系統與張力 158 第三節、師培師的專業學習 165 壹、對教師學習臆測活動設計的認識 165 一、認識教師的張力 165 1. 教師參與專業發展的張力 165 2. 教師參與臆測活動設計工作坊的張力 168 二、認識教師的設計表現 173 1. 學生迷思隨手可得,學生舉例反駁為優先 173 2. 反駁錯誤命題很容易,修改錯誤命題有困難 175 3. 修改錯誤命題表現,影響活動序列設計 177 4. 設想學習活動目標,傾向學得多或學得快 178 5. 嘗試學生分組討論,經營方式仍待努力 179 6. 教學試驗結果著重結果,其次是思考歷程 180 三、認識教師教學取向的改變 184 1. 察覺迷思概念可當作教學資源 184 2. 經驗學生探究為本的學習取向 185 3. 認識教師為學習活動的協助者 187 四、認識教師對學生學習的認識 188 1. 認識學生學習的困難 188 2. 推理學生困難原因並猜測解決方式 189 3. 認識學生卓越的表現 191 4. 認識學生的ZPD 192 五、認識教師專業學習社群的營造 195 1. 教師專業知識共享 195 2. 教師專業學習社群發展 196 貳、對臆測活動設計工作坊規劃與實施的知能 198 一、實務需求調整原則 200 二、專業經驗轉換原則 200 三、設計程序建構原則 201 四、個案歷程探索原則 202 五、思考行動辯證原則 203 六、相互支持學習原則 204 第五章、結論與建議 206 第一節、研究結論 206 壹、專業發展活動系統的張力 206 貳、師培師促進策略的演化 207 叁、師培師的專業學習:認識教師學習 208 肆、師培師的專業學習:臆測活動設計工作坊規劃原則 209 第二節、對數學教師教育的貢獻與建議 211 壹、臆測活動設計工作坊順應教師專業發展趨勢 211 貳、臆測活動設計工作坊是有效的教師專業發展模式 213 叁、臆測活動設計工作坊的規劃原則當作設計為本工作坊規劃參考 214 第三節、對未來師培師研究的建議 216 壹、教師假設性學習環的類比 216 貳、教師專業成長互連模式的類比 216 叁、教師學習機制的類比 217 肆、教師結構決定的類比 217 伍、教師學習檢驗3C的類比 218 陸、生手教師與專家教師對比的類比 218 參考文獻 220 附件 234

    Adler, J., Ball, D., Krainer, K., Lin, F.-L., & Novotna, J. (2005). Reflections on an emerging field: Researching mathematics teacher education. Educational Studies in Mathematics, 60(3), 359-381.
    Adler, S. A. (1993). Teacher education: Research as reflective practice. Teaching and Teacher Education,, 9(2), 159-167.
    Altrichter, H., Kemmis, S., McTaggart, R., & Zuber‐Skerritt, O. (2002). The concept of action research. The Learning Organization, 9(3), 125-131.
    Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1-12.
    Artzt, A. F. (1999). A structure to enable preservice teachers of mathematics to reflect on their teaching. Journal of Mathematics Teacher Education, 2, 143-166.
    Artzt, A. F., & Armour-Thomas, E. (1999). A cognitive model for examing teachers' instructional practice in mathematics: A guide for facilitating teacher reflection. Educational Studies in Mathematics, 40, 211-235.
    Bell, A. (1993). Principles for the design of teaching. Educational Studies in Mathematics 24, 5-34.
    Berg, C. V. (2012). From designing to implementing mathematical tasks: Investigating the changes in the nature of the T-shirt task. The Mathematics Enthusiast, 9(3), 347-358.
    Bergsten, C., & Grevholm, B. (2008). Knowledgeable teacher educators and linking practices. In B. Jaworski & T. Wood (Eds.), The international handbook of mathematics teacher education: The mathematics teacher educator as a developing professional (pp. 221-246). Rotterdam: Sense Publishers.
    Betts, P. (2011). Tensions of mentoring mathematics teachers: Translating theory into practice. In S. Schuck & P. Pereira (Eds.), What Counts in Teaching Mathematics (Vol. 11, pp. 13-27): Springer Netherlands.
    Bishop, A. J. (1991). Mathematical enculturation: A cultural perspective on mathematics education. Dordrecht: Kluwer Academis Publishers.
    Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education. International Newsletter on the Teaching and Learning of Mathematical Proof, 7/8.
    Borko, H., & Livingston, C. (1989). Cognition and improvisation: Differences in mathematics instruction by expert and novice teachers. American educational research journal, 26(4), 473-498.
    Boyd, P., Baker, L., Harris, K., Kynch, C., & McVittie, E. (2006). Working with Multiple Identities: supporting new teacher educators in higher education. In S. Bloxham, S. Twisleton & A. Jackson (Eds.), Challenges and Opportunities: Developing learning and teaching in ITE across the UK. Bristol: ESCalate, Higher Education Academy.
    Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141-178.
    Brown, S. I., & Walter, M. I. (1983). The art of problem posing: Franklin Institute Press.
    Cañadas, M., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55-72.
    Carr, W., & Kemmis, S. (1986). Becoming critical: Education, knowledge and action research. London: Falmer Press.
    Chapman, O. (2008). Mathematics teacher educators' learning from research on their insturctional practices: A cognitive perspective. In B. Jaworski & T. Wood (Eds.), The International Handbook of Mathematics Teacher Education Volume 4: The Mathematics Teacher Educator as a Developing Professional (pp. 115-134). Rotterdam: SensePublishers.
    Chapman, O. (2009). Educators Reflecting on (Researching) Their Own Practice. In R. Even & D. Ball (Eds.), The Professional Education and Development of Teachers of Mathematics (Vol. 11, pp. 121-126): Springer US.
    Chen, J.-C., Lin, F.-L., Hsu, H.-Y., & Cheng, Y.-H. (2014). Integration of conjecturing and diagnostic teaching: Using proceduralized refutation model as intermediate framework. Paper presented at the the Joint Meeting of PME 38 and PME-NA 36, Vancouver, Canada: PME.
    Cheng, Y.-H. (2000). Student teachers' learning process of pedagogical concept: The case of generic example for learning mathematics concept. Doctor of Philosophy, National Taiwan Normal University, Taipei.
    Christiansen, B., & Walther, G. (1986). Task and activity. In B. Christiansen, A. C. Howson & M. Otte (Eds.), Perspectives on Mathematics Education (pp. 243-307). Holland: Reidel.
    Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and Teacher Education, 18, 947-967.
    Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13.
    Cochran-Smith, M. (2003). Learning and unlearning: The education of teacher educators. Teaching and Teacher Education, 19, 5-28.
    Cochran-Smith, M. (2005). Teacher educators as researchers: multiple perspectives. Teaching and Teacher Education, 21(2), 219-225.
    Cole, M., & Engeström, Y. (1993). A cultural-historical approach to distributed cognition. In G. Salomon (Ed.), Distributed cognition: Psychological and educational considerations (pp. 1-46). New York: Cambridge University Press.
    Collective, T. D.-B. R. (2003). Design-Based Research: An Emerging Paradigm for Educational Inquiry. Educational Researcher, 32(1), 5-8. doi: 10.2307/3699927
    Collins, A. (1992). Toward a design science of education. In E. Scanlon & T. O'Shea (Eds.), New directions in educational technology (pp. 15-22). New York: Spring.
    Conway, P. F., & Clark, C. M. (2003). The journey inward and outward: a re-examination of Fuller's concerns-based model of teacher development. Teaching and Teacher Education, 19(5), 465-482.
    Cooney, T. J. (1994). Teacher education as an exercise in adaptation. In D. Aichele & A. Coxford (Eds.), Professional development for teachers of mathematics (pp. 9-22). Reston, VA: National Council of Teachers of Mathematics.
    De Lange, J. (1999). A framework for classroom assessment in mathematics. Unpublished manuscript, National Center for Improving Student Learning and Achievement in Mathematics and Science, Assessment Study Group.
    Edwards, T. G., & Hensien, S. M. (1999). Changing Instructional Practice Through Action Research. Journal of Mathematics Teacher Education, 2, 187-206.
    Engeström, Y. (1987). Learning by expanding: an activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit.
    Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14(1), 133-156.
    Even, R. (2008). Facing the challenge of educating educators to work with practicing mathematics teachers. In B. Jaworski & T. Wood (Eds.), The international handbook of mathematics teacher education: The mathematics teacher educator as a developing professional (pp. 57-73). Rotterdam: Sense Publishers.
    Feldman, A. (2002). Existential approaches to action research Educational Action Research, 10(2), 233-252.
    Feldman, A., Paugh, P., & Mills, G. (2004). Self-study through action research. In J. J. Loughran, M. L. Hamilton, V. K. LaBoskey & T. Russell (Eds.), International Handbook of Self-Study of Teaching and Teacher Education Practices (Vol. 12, pp. 943-977). Netherlands: Springer.
    Fernandez, C., Chokshi, S., Cannon, J., & Yoshida, M. (2003). Learning about lesson study in the United States. In M. Beauchamp (Ed.), New and old voices on Japanese education.
    Fernandez, C., & Yoshida, M. (2009). Lesson study: A Janpanese approach to improving mathematics teaching and learning. New York: Routledge.
    Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. Dordrecht: D. Reidel
    Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: D. Reidel.
    Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht: Kluwer Academic Publishers.
    Fullan, M. G., & Miles, M. B. (1992 ). Getting reform right: what works and what doesn't. Phi Delta Kappan, 73(10), 745-752.
    Goldsmith, L. T., Doerr, H. M., & Lewis, C. (2009). Opening the black box of teacher learning: Shifts in attention. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 97-104). Thessaloniki, Greece: PME.
    Goodchild, S. (2008). A ques for 'good' research. In B. Jaworski & T. Wood (Eds.), The International Handbook of Mathematics Teacher Education Volume 4: The Mathematics Teacher Educator as a Developing Professional (pp. 201-220). Rotterdam: SensePublishers.
    Goodell, J. E. (2006). Using critical incident reflections: a self-study as a mathematics teacher educator. Journal of Mathematics Teacher Education, 9(3), 221-248. doi: 10.1007/s10857-006-9001-0
    Goodwin, A. L., Smith, L., Souto-Manning M., Cheruvu, R., Tan, M. Y., Reed, R., & Taveras, L. (2014). What should teacher educators know and be able to do? Perspectives from practicing teacher educators. Journal of Teacher Education, 65(4), 284-302.
    Goos, M. (2013). Sociocultural perspectives in research on and with mathematics teachers: a zone theory approach. ZDM Mathematics Education, 45, 521-533.
    Gow, L., & Kember, D. (1993). Conceptions of teaching and their relationship to student learning. British Journal of Educational Psychology, 63, 20-33.
    Gravemeijer, K. (1994). Educational development and developmental research in mathematics education. Journal for Research in Mathematics Education, 25(5), 443-471.
    Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical thinking and learning, 1(2), 155-177. doi: 10.1207/s15327833mtl0102_4
    Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. v. d. Akker, K. Gravemeijer, S. McKenney & N. Nieveen (Eds.), Educational design research (pp. 17-51).
    Guilfoyle, K. (1992, April). Communicating with students: The impact of interactive dialogue journals on the thinking and teaching of a teacher educator. Paper presented at the Annual Meeting of the American Education Research Association, San Francisco.
    Guskey, T. R. (1986). Staff development and the process of teacher change. Educational Researcher, 15(5), 5-12.
    Hamilton, M. L. (1992, April). Making public the private voice of a teacher educator. Paper presented at the Annual Meeting of the American Education Research Association, San Francisco.
    Hamilton, M. L. (Ed.). (1998). Reconceptualizing teaching practice: Self-Study in Teacher Education. London Falmer Press.
    Harel, G., & Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. CBMS Issues in Mathematics Education, 7, 234-283.
    Harel, G., & Sowder, L. (2007). Toward a comprehensive perspective on proof, In (Ed.), ,. In F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning: National Council of Teachers of Mathematics.
    Herbst, P. (2003). Using novel tasks in teaching mathematics: Three tensions affecting the work of the teacher. American Educational Research Journal, 40(1), 197-238.
    Hjalmarson, M. A., & Diefes-Dux, H. (2008 ). Teacher as Designer: A Framework for Teacher analysis of Mathematical Model-Eliciting Activities. The Interdisciplinary Journal of Problem-based Learning, 2(1), 57-78.
    Jaworski, B. (1994). Investigating mathematics teaching: A constructivist enquiry. London: The Falmer Press.
    Jaworski, B. (2001). Developing mathematics teaching: Teachers, teacher educators, and researchers as co-learners. In F.-L. Lin & T. J. Cooney (Eds.), Making sense of mathematics teacher education (pp. 295-320). Dordrecht: Kluwer Academic Publishers.
    Jaworski, B. (2006). Theory and Practice in Mathematics Teaching Development: Critical Inquiry as a Mode of Learning in Teaching. Journal of Mathematics Teacher Education, 9(2), 187-211. doi: 10.1007/s10857-005-1223-z
    Jaworski, B. (2008). Development of the mathematics teacher educator and its relation to teaching development. In B. Jaworski & T. Wood (Eds.), The International Handbook of Mathematics Teacher Education Volume 4: The Mathematics Teacher Educator as a Developing Professional (pp. 335-361). Rotterdam: SensePublishers.
    Jaworski, B., & Huang, R. (2014). Teachers and didacticians: key stakeholders in the processes of developing mathematics teaching. ZDM Mathematics Education, 46, 173-188.
    Jaworski, B., & Potari, D. (2009). Bridging the macro-and micro-divide: using an activity theory model to capture sociocultural complexity in mathematics teaching and its development. Educational studies in mathematics, 72(2), 219-236.
    Jaworski, B., & Wood, T. (Eds.). (2008). International handbook of mathematics teacher education: Vol. 4 The mathematics teacher educator as a developing professional. Rotterdam, The Netherlands: Sense Publishers.
    Kemmis, S., & McTaggart, R. (1988). The Action Research Planner: Geelong, Victoria: Deakin University Press.
    Kieran, C., Krainer, K., & Shaughnessy, J. M. (2013). Linking Research to Practice: Teachers as Key Stakeholders in Mathematics Education Research. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick & F. K. S. Leung (Eds.), Third International Handbook of Mathematics Education (pp. 361-392). New York: Springer.
    Korthagen, F. A. J., & Kessels, J. P. A. M. (1999). Linking theory and practice: Changing the pedagogy of teacher education. Educational Researcher, 28, 4-17.
    Krainer, K. (1994). PFL-Mathematics: A teacher in-service education course as a contribution to theimprovement of professional practice in mathematics instruction. In J. P. Ponte & J. F. Matos (Eds.), Proceedings of the 18th International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 104-111). Lisbon, Portugal: PME.
    Krainer, K. (2008). Reflecting the development of a mathematics teacher educator and his discipline. In B. Jaworski & T. Wood (Eds.), The Mathematics Teacher Educator as a Developing Professional (pp. 177-199). Rotterdam, the Netherlands: Sense Publishers.
    Krainer, K. (2011). Teachers as stakeholders in mathematics education research. In B. Ubuz (Ed.), Proceedings of the 35th conference of the international group for the psychology of mathematics education, vol 1. (Vol. 1, pp. 42-67). Ankara, Turkey: PME.
    LaBoskey, V. K. (2004). The methodology of self-study and its theoretical underpinnings. In J. J. Loughran, M. L. Hamilton, V. K. LaBoskey & T. Russell (Eds.), International handbook of self-study of teaching and teacher education practices (pp. 817-869). Netherlands: Springer.
    Lakatos, I. (1976). Proof and refutations: The logic of mathematical discovery. Cambridge: The Cambridge University Press.
    Lee, K.-H. (2011). Modelling of and conjecturing on a soccer ball in a Korean eighth grade mathematics classroom. International Journal of Science and Mathematics Education, 9, 751-769.
    Lee, K.-H., & Sriraman, B. (2010). Conjecturing via reconceived classical analogy. Educational Studies in Mathematics, 76, 123-140.
    Lee, Y.-S., Lin, F.-L., Yang, K.-L., & Chen, J.-C. (2015). Exploring MTE-Rs’educating approaches and presented knowledge in design-based workshops for in-service mathematics teachers
    Leinhardt, G. (1989). Math lessons: A contrast of novice and expert competence. Journal for Research in Mathematics Education, 20(1), 52-75.
    Leont'ev, A. N. (1979). The problem of activity in psychology. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 37-71). New York: Sharpe.
    Lerman, S., & Zehetmeier, S. (2008). Face-to-face communities and networks of practicing mathematics teachers: Studies on their professional growth. In K. Krainer & T. Wood (Eds.), Participants in mathematics teacher education (pp. 133-153).
    Lesh, R. (2003). Research design in mathematics education: Focusing on design experiments. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 27-49). Mahwah, New Jersey: Lawrence Erlbaum Associates.
    Lesh, R., Hamilton, E., & Kaput, J. (2007). Directions for future research. In R. Lesh, E. Hamilton & J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 449-454). Mahwah: Lawrence Erlbaum Associates.
    Lin, F.-L. (2006, January). Designing mathematics conjecturing activities to foster thinking and constructing actively. Paper presented at the Keynote address in the APEC-TSUKUBA International Conference, Japan.
    Lin, F.-L. (2009). "Harmony, east attainment and thoughtfulness"-teaching and learning in mathematics. Paper presented at the Seminar on Mathematics Education-Theory and Perspective of Mathematics Learning and Theory from the East, Hong Kong.
    Lin, F.-L. (2010). Mathematical tasks designing for different learning settings. In M. Pinto & T. Kawasaki (Eds.), 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 83-99). Belo Horizonte, Brazil.
    Lin, F.-L., & Cooney, T. J. (Eds.). (2001). Making sense of mathematics teacher education. Dordrecht: Kluwer Academic Publishers.
    Lin, F.-L., Hsu, H.-Y., Yang, K.-L., Chen, J.-C., & Lee, K.-H. (2011, November). Adventuring Through Big Problems as Means of Innovations in Mathematics Education. Paper presented at the APEC-Ubon Ratchathani International Symposium on Innovation on Problem Solving-Based Mathematics Textbooks and E-Textbooks, Ubon Ratchathani, Thailand.
    Lin, F.-L., Kuo, F.-P., & Lin, K.-H. (1985). Junior high school childrens' understanding of ratio and proportion: A second year report of the mathematics understanding of Taiwan students programme. Taipei: National Taiwan Normal University.
    Lin, F.-L., & Rowland, T. (in press). Pre-service and in-service mathematics teachers' knowledge and professional development.
    Lin, F.-L., & Tsao, L.-C. (1999). Exam math re-examined. In C. Hoyles, C. Morgan & G. Woodhouse (Eds.), Rethinking mathematics curriculum (pp. 228-239). London: Falmer Press.
    Lin, F.-L., & Wu Yu, J.-Y. (2005, July). False proposition as a means for making conjectures in mathematics classrooms. Paper presented at the Invited speech in Asian Mathematical Conference, Singapore.
    Lin, F.-L., & Yang, K.-L. (2002). Defining a Rectangle under a Social and Practical Setting by two Seventh Graders. ZDM, 34(1), 17-28.
    Lin, F.-L., Yang, K.-L., Hsu, H.-Y., & Chen, J.-C. (2014). Using theoretical principles in the evaluation of teachers' task design for conjecturing. Paper presented at the the Joint Meeting of PME 38 and PME-NA 36, Vancouver, Canada: PME.
    Lin, F.-L., Yang, K.-L., Lee, K.-H., Tabach, M., & Stylianides, G. (2012). Task designing for conjecturing and proving: developing principles based on practical tasks. In M. d. Villiers & G. Hanna (Eds.), Proof and proving in mathematics education, ICME Study 19: Springer.
    Llinares, S., & Krainer, K. (2006). Mathematics (student) teachers and teacher educators as learners. Handbook of research on the psychology of mathematics education: Past, present and future, 429-459.
    Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N., & Hewson, P. W. (2009). Designing professional development for teachers of science and mathematics: Corwin Press.
    Loughran, J. (2006). Developing a pedagogy of teacher education: Understanding teaching and learning about teaching. London: Routledge.
    Loughran, J. J. (2004). A history and context of self-study of teaching and teacher education practices. In J. J. Loughran, M. L. Hamilton, V. K. LaBoskey & T. Russell (Eds.), International handbook of self-study of teaching and teacher education practices (pp. 7-39). Netherlands: Springer.
    Loughran, J. J., Hamilton, M. L., LaBoskey, V. K., & Russell, T. (Eds.). (2004). International handbook of self-study of teaching and teacher education practices. Netherlands: Springer.
    Magidson, S. (2005). Building bridges within mathematics education: Teaching, research, and instructional design. The Journal of Mathematical Behavior, 24(2), 135-169.
    Marrongelle, K., Sztajn, P., & Smith, M. (2013). Providing professional development at scale: Recommendations from research to practice. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 305-312). Kiel, Germany: PME.
    Mason, J. (2008). Being mathematical with and in front of learners: Attention, awareness, and attitude as sources of differences between teacher educators, teachers and learners. In B. Jaworski & T. Wood (Eds.), The international handbook of mathematics teacher education: The mathematics teacher educator as a developing professional (pp. 31-56). Rotterdam: Sense Publishers.
    Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically: Addison-Wesley Pub. Co. (London and Reading, Mass.)
    Mason, J., & Johnston-Wilder, S. (2004). Designing and using mathematical tasks. Open University: Milton Keynes.
    Mason, J., & Pimm, D. (1984). Generic example: Seeing the general in particular. Educational Studies in Mathematics, 15(3), 277-289.
    Maynard, T., & Furlong, J. (1993). Learning to Teach and Models of Mentoring. In D. Mcintyre, H. Hagger & M. Wilkin (Eds.), Mentoring: Perspectives on School Based Teacher Education. London: Kogan Page.
    Michener, E. R. (1978). understanding understanding mathematics. Cognitive Science, 2, 361-383.
    Mohammad, R. F. (2008). Becoming a mathematics teacher educator. In B. Jaworski & T. Wood (Eds.), The Mathematics Teacher Educator as a Developing Professional (pp. 157-176). Rotterdam, the Netherlands: Sense Publishers.
    National Research Council. (2001). Adding it up: How children learn mathematics. In J. Kilpatrick, J. Swafford & B. Findell (Eds.), Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academies Press.
    Nickerson, S. D. (2008). Teams of practising teachers: Developing teacher professionals. In K. Krainer & T. Wood (Eds.), Participants in mathematics teacher education: Individuals, teams, communities, and networks (pp. 89-110).
    Nipper, K., Ricks, T., Kilpatrick, J., Mayhew, L., Thomas, S., Kwon, N.-Y., . . . Hembree, D. (2011). Teacher tensions: Expectations in a professional development institute. Journal of Mathematics Teacher Education, 14(5), 375-392.
    OECD. (2007). PISA 2006: Science competencies for tomorrow's world: Volume 1: Analysis. Paris: OECD Publishing.
    OECD. (2010). PISA 2009 results: What students know and can do : Student performance in mathematics, reading and science (Volume I) Paris: OECD Publishing.
    OECD. (2014). PISA 2012 results: What students know and can do: Student performance in mathematics, reading and science (Volume I) Paris: OECD Publishing.
    Orrill, R., & French, V. (2002). Mathematics framework for the 2003 National Assessment of Educational Progress. Washington, DC: National Assessment Governing Board.
    Pólya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
    Pólya, G. (1965). Mathematical Discovery: On understanding, learning, and teaching problem solving (Vol. II): John Wiley & Sons.
    Peled, I. (2007). The role of analogical thinking in designing tasks for mathematics teacher education: An example of a pedagogical ad hoc task. Journal of Mathematics Teacher Education(10), 369-379.
    Perks, P., & Prestage, S. (2008). Tools for learning about teaching and learning. In B. Jaworski & T. Wood (Eds.), The international handbook of mathematics teacher education: The mathematics teacher educator as a developing professional (pp. 265-280). Rotterdam: Sense Publishers.
    Pinnegar, S. (1992, April). Student teaching as a teacher educator. . Paper presented at the Annual Meeting of the American Education Research Association, San Francisco.
    Placier, P. (1992, April). Maintaining practice: A struggle of too little time. Paper presented at the Annual Meeting of the American Education Research Association, San Francisco.
    Ponte, J. P. (2009). External, internal and collacorative theories of mathematics teacher education In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 99-103). Thessaloniki, Greece: PME.
    Potari, D., & Jaworski, B. (2002). Tackling Complexity In Mathematics Teaching Development: Using the Teaching Triad as a Tool for Reflection and Analysis. Journal of Mathematics Teacher Education, 5(4), 351-380. doi: 10.1023/a:1021214604230
    Prestage, S., & Perks, P. (1992). Making Choices: Part 2—Not if you're a bear. . Mathematics in School, 21(4), 10-11.
    Proulx, J. (2008). Structural determinism as hindrance to teachers' learning: Implications for teacher education. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sepúlveda (Eds.), Proceedings of the joint meeting of PME 32 and PME-NA XXX (Vol. 4, pp. 145-152). Morelia, Mexico: PME.
    Runesson, U. (2008). Learning to design for learning: The potential of learning study to enhance teachers' and students' learning. In D. Tirosh & T. Wood (Eds.), Knowledge and beliefs in mathematics teaching and teaching development (pp. 153-172). Rotterdam, Netherlands: Sense Publishers.
    Russell, T. (1992, April). A teacher educator and his students reflect on teaching on teaching high-school physics. Paper presented at the Annual Meeting of the American Education Research Association, San Francisco.
    Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design Tools in Didactical Research: Instrumenting the Epistemological and Cognitive Aspects of the Design of Teaching Sequences. Educational Researcher, Vol. 38(5), 329-342.
    Sakonidis, C., & Potari, D. (2014). Mathematics teacher educators’/researchers’ collaboration with teachers as a context for professional learning. ZDM-The International Journal on Mathematics Education, 46, 293-304.
    Samaras, A. P., & Freese, A. R. (2009). Looking back and looking forward: An historical overview of the self-study school. In C. A. Lassonde, S. Galman & C. Kosnik (Eds.), Self-study research methodologies for teacher educators. Rotterdam, The Netherlands Sense Publishers.
    Schön, D. (1983). The reflective practitioner: How professionals think in action. New York: Basic Books.
    Schön, D. (1987). Educating the reflective practitioner. Oxford: Jossey-Bass.
    Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
    Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26, 114-145.
    Simon, M. A. (2008). The challenge of mathematics teacher education in and era of mathematics education reform. In B. Jaworski & T. Wood (Eds.), The International Handbook of Mathematics Teacher Education Volume 4: The Mathematics Teacher Educator as a Developing Professional (pp. 17-29). Rotterdam: SensePublishers.
    Stacey, K. (2006, December ). What is mathematical thinking and why is it important? Paper presented at the APEC Symposium. Innovative teaching mathematics through lesson study II. .
    Stylianides, G., & Stylianides, A. (2009). Facilitating the transition from empirical arguments to proof. Journal for Research in Mathematics Education, 40(3), 314-352.
    Swan, M. (2007). The impact of task-based professional development on teachers' practices and beliefs: a design research study. Journal of Mathematics Teacher Education, 10(4), 217-237.
    Sztajn, P. (2008). Caring relations in education of practising mathematics teachers. In B. Jaworski & T. Wood (Eds.), The Mathematics Teacher Educator as a Developing Professional (pp. 299-313). Rotterdam, the Netherlands: Sense Publishers.
    Sztajn, P., Campbell, M. P., & Yoon, K. S. (2009). Conceptualizing professional development in mathematics: elements of a model. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 209-216). Thessaloniki, Greece: PME.
    Tall, D. (1986). Building and Testing a Cognitive Approach to the Calculus Using Interactive Computer Graphics. Ph. D., University of Warwick.
    Tanner, D., & Tanner, L. N. (1980). Curriculum development: Theory into practice. New York: Macmillan.
    Thompson, P. W., Carlson, M. P., & Silverman, J. (2007). The design of tasks in support of teachers' development of coherent mathematical meanings. Journal of Mathematics Teacher Education, 10, 415-432.
    Tomal, D. R. (2010). Action research for educators. : Rowman & Littlefield Publishers.
    Tsamir, P., Tirosh, D., Dreyfus, T., Barkai, R., & Tabach, M. (2009). Should proof be minimal? Ms T's evaluation of secondary school students’ proofs. The Journal of Mathematical Behavior, 28(1), 58-67.
    Tzur, R. (2001). Becoming a mathematics teacher-educator: Conceptualizing the terrain through self-reflective analysis. Journal of Mathematics Teacher Education, 4(4), 259-283.
    Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press. Published originally in Russian in 1930.
    Watson, A., & Mason, J. (2007). Taken-as-shared: a review of common assumptions about mathematical tasks in teacher education. Journal of Mathematics Teacher Education, 10, 205-215.
    Watson, A., & Sullivan, P. (2008). Teachers learning about tasks and lessons. In D. Tirosh & T. Wood (Eds.), Tools and resources in mathematics teacher education (pp. 109-134). Rotterdam, Netherlands: Sense Publishers.
    Weimer, M. (2013). Learner-Centered Teaching: Five Key Changes to Practice (second ed.). San Francisco: Jossey-Bass.
    Wertheimer, M. (1961). Productive Thinking (enlarged edition, Wertheimer, E. ed.). London: Social Science Paperbacks with Tavistock Publications.
    Yang, K.-L., Hsu, H.-Y., Lin, F.-L., Chen, J.-C., & Cheng, Y.-H. (2015). Exploring the educative power of an experienced mathematics teacher educator-researcher. Educational Studies in Mathematics, 89(1), 19-39.
    Yoshida, M. (2001). American educators' interest and hopes for lesson study (jugyokenkyu) in the U.S. and what it means for teachers in Japan. Journal of Japan Society of Mathematical Education, 83(4), 24-34.
    Zaslavsky, O. (2008). Meeting the challenges of mathematics teacher education through design and use of tasks that facilitate teacher learning. . In B. Jaworski & T. Wood (Eds.), The Mathematics Teacher Educator as a Developing Professional (pp. 93-114). Rotterdam, the Netherlands: Sense Publishers.
    Zaslavsky, O., Chapman, O., & Leikin, R. (2003). Professional development in mathematics education: Trends and tasks. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick & F. K. S. Leung (Eds.), Second International Handbook of Mathematics Education (pp. 877-917). Dordrecht, the Netherlands: Kluwer Academic Publishers.
    Zaslavsky, O., & Leikin, R. (2004). Professional development of mathematics teacher educators: Growth through practice. Journal of Mathematics Teacher Education, 7, 5-32.
    方正一, & 洪志成. (2013). 指派教師研習與學校對策間的拉扯:教師專業觀點. 嘉大教育研究學刊, 30, 97-122.
    佐藤學. (2012). 學校改革:學習共同體的構想與實踐. 東京都: 岩波書局.
    余肇傑. (2014). 淺談佐藤學「學習共同體」. 臺灣教育評論月刊, 3(5), 122-125.
    林福來. (2006). 整合計畫:青少年數學論證「學習與教學」理論之研究─總計畫(4/4).
    林福來. (2007). 數學臆測活動的設計、教學與評量:總計畫計畫書.
    林福來. (2010). 數學臆測活動的設計、教學與評量:總計畫. In 楊德清 (Ed.), 行政院國家科學委員會專題研究計畫成果報告-數學教育學門專題研究成果討論會 (Vol. B, pp. 89-100). 嘉義: 國立嘉義大學數學教育研究所.
    林福來. (2011). 數學教師與其師培者的專業發展:統整理論建構與實務應用-子計畫七:中學在職教師設計「融入臆測的診斷式概念學習活動序列」之教學力成長模式.
    林福來. (2014). 二階層次的數學教育理論觀點. Paper presented at the 102 年度數學教育專題研究計畫成果討論會, 新竹.
    教育部. (2005). 教育部辦理攜手計畫課後扶助補助要點. 台北市.
    陳英娥, & 林福來. (1998). 數學臆測的思維模式. 科學教育學刊, 6(2), 192-218.
    黃志賢. (2008). 利用程序性反駁發展台灣泰雅族國一學生論證能力之研究. Paper presented at the 中華民國第24屆科學教育學術研討會論文集.
    黃志賢, & 林福來. (2008). 利用活動理論分析台灣泰雅族國中生的數學學習並設計教學活動. 科學教育學刊, 16(2), 147-169.
    歐用生. (1996). 教師專業成長. 台北: 師大書苑.
    薛雅慈. (2014). 國中教師以學習共同體啟動新學習型態之研究. 教育科學研究期刊, 59(1), 101-140.
    簡成熙. (2004). 教育哲學:理念、專題與實務. 台北: 高等教育.

    無法下載圖示 本全文未授權公開
    QR CODE