簡易檢索 / 詳目顯示

研究生: 杜威仕
W. S. Duh
論文名稱: 堅固的非擴張映射在UCED巴納赫空間上的一些定點定理
Fixed Point Theorems for Firmly Nonexpansive Mappings in UCEDBanach Spaces
指導教授: 顏啟麟
Yan, Qi-Lin
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 1999
畢業學年度: 87
語文別: 英文
論文頁數: 16
中文關鍵詞: 堅固的非擴張的巴納赫空間定點定點定理
英文關鍵詞: Fixed Point, Fixed Point Theorem, Firmly, Banach Space, UCEDBanach Space
論文種類: 學術論文
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將推廣R. Smarzewski [9]的定理於任一方向均勻凸性( uniformly convex in every direction,簡寫成UCED )的巴納赫空間( Banach space )上,而得到以下主要結論:
    令X 是一個在任一方向均勻凸性的巴納赫空間且C 是由X中有限n個非空弱緊緻(weakly compact)、凸子集 所成的聯集。若 是一個 堅固的非擴張( firmly nonexpansive)映射,其中 0≦λ≦1,則T在C中有定點(fixed point)。

    This thesis will obtain a main result by extending the Theorem of R. Smarzewski [9] in a uniformly convex in every direction (UCED) Banach space:
    Let X be a UCED Banach space, and C=∪Ck a union of nonempty weakly compact convex subsets of X. Suppose T is a firmly nonexpansive mapping for some 0≦λ≦1 . Then T has a fixed point in C.

    Section 1 Introduction .…..……...…………………1. Section 2 Notations and Definitions ...….………….2. Section 3 Main Results .…………………………..7. References …..………………...…………………15.

    [1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 296-414.
    [2] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
    [3] M. M. Day, R. C. James, and S. Swaminathan, normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051-1059.
    [4] V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) No.87 (1971).
    [5] A. L. Garkavi, the best possible net and the best possible cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106; Amer. Math. Soc. Transl. Ser. 2, 39 (1964), 111-132.
    [6] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
    [7] D. Gohde, Zum Prinzip der knotraktiven Ablildung, Math. Nachr. 30 (1965), 251-258.
    [8] F. E. Browder, Nonexpansive nonlinear operators in Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.
    [9] R. Smarzewski, On firmly nonexpansive mappings, Proc. Amer. Math. Soc. 113 (1991), 723-725.
    [10] D. van Dulst, Reflexive and Superreflexive Banach Spaces (Math. Centre Tracts, N 102), Mathematisch Centrum, Amsterdam, 1978.
    [11] M. A. Smith, Some examples concerning rotundity in Banach Spaces, Math. Ann. 233 (1978), 155-161.

    無法下載圖示
    QR CODE