簡易檢索 / 詳目顯示

研究生: 張文嘉
Chang, Christine Susan
論文名稱: 應用語料庫工具改正英文錯誤之效能研究
The Effects of Corpus Tools on Assisting EFL Learners to Correct Errors
指導教授: 陳浩然
Chen, Hao-Jan
學位類別: 碩士
Master
系所名稱: 英語學系
Department of English
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 113
中文關鍵詞: 語料庫工具英文文法錯誤錯誤類型錯誤更正搜尋歷程大學生
英文關鍵詞: corpus tools, grammatical error, error correction, error type, DDL, EFL
DOI URL: https://doi.org/10.6345/NTNU202204084
論文種類: 學術論文
相關次數: 點閱:295下載:45
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技進步,越來越多語料庫工具透過大數據分析,將語料以頻率高
    低排列,以協助使用者了解常用英文詞句搭配。過去研究證實學習者能有效
    使用語料庫工具搜尋語料,進而改正其英文寫作文法錯誤,甚至是更正不同
    類型的英文文法錯誤。然而,過去有研究指出每種語料庫工具因其不同設計
    目的,皆有其優點及限制。越來越多學者因而提出使用及研究多於一種語料
    庫工具並比較不同語料庫工具在錯誤改正上之效能,特別是使用包含豐富語
    料及簡單易操作介面的語料庫工具,以協助英語學習者使用語料庫改正不同
    類型的英文文法錯誤。

    本研究目的為比較兩種符合上述兩大條件的語料庫工具,並研究其在十種英文文法錯誤類型上的改正效用。本研究之四名受試者為就讀大學且英文能力中級的英文學習者,其中兩名受試者會先使用語料庫工具 Netspeak 進行錯誤改正,並再以另一語料庫工具 Linggle 進行錯誤改正;另兩名會以相反的順序改正錯誤。研究工具包含錯誤例題試卷及答案、前後測態度問卷及學習者搜尋歷程之記錄。本研究分析英文學習者以兩種工具更正十種錯誤類型答案比例、學習者之搜尋歷程及學習者對語料庫工具之態度。

    研究結果指出兩種語料庫工具皆能有效的協助學習者更正十種英文文
    法錯誤類型。其中部分錯誤類型有較高的更正率,但部分錯誤類型卻發現無
    法被兩種語料庫工具更正。此外,搜尋歷程顯示學習者能有效使用搜尋符碼
    並發展搜尋策略。本研究也發現學習者對這兩種語料庫工具抱持正向態度,
    且未來也願意繼續使用這兩種語料庫工具進行語言學習。

    Studies showed that learners could use corpus tools to correct different types of error; however, each corpus tool may have its strength and weakness based on the design purpose. Thus, an increasing number of scholars advocated the use of more than one corpus tool to facilitate learners to do data-driven learning (DDL). Among various corpus tools that were analyzed, it is found that corpus tools with two features that could be helpful for learners to correct errors, which are gigantic corpora and user-friendly interface similar to search engines.

    Netspeak and Linggle are two powerful corpus tools compass copious corpora and user-friendly interface similar to search engines that are suitable for DDL. The present study aims at analyzing the effects of Netspeak and Linggle on assisting learners to correct the ten types of error. Four intermediate college learners were recruited. Two of them used Netspeak and then used Linggle to correct errors; the other two learners used the two corpus tool in reverse orders. The instruments include the error correction tasks, leaners’ searching logs, and pre-and post-questionnaires. Three aspects were examined, which are types of error that learners could correct by using the two corpus tools, the error correction processes, and learners’ attitudes toward the two corpus tools.

    The results showed that two corpus tools were found to
    be useful for learners to correct the ten types of error. The two corpus tools were found to be more useful to correct some error types while others may not be corrected by using the corpus tools.Moreover, it is found that learners used operators with various strategies while correcting errors. Finally, learners held positive attitudes toward to two corpus tools and were willing to use them in the future.

    中文摘要..............................................i ABSTRCT............................................ ii ACKNOWLEDGEMENT................................... iii TABLE OF CONTENTS.................................. iv LIST OF TABLES......................................vi LIST OF FIGURES....................................vii CHAPTER 1 INTRODUCTION..............................1 1.1 Background.......................................1 1.2 Motivation.......................................3 1.3 Purpose..........................................5 1.4 Research Questions...............................7 1.5 Significance.....................................7 CHAPTER 2 LITERATURE REVIEW........................10 2.1 Notions of Data-driven Learning (DDL)...........10 2.2 Studies of DDL..................................13 2.2.1 General Learning Abilities................... 13 2.2.2 Writing Accuracy..............................15 2.2.3 Different Types of Grammatical Error..........24 CHAPTER 3 METHODOLOGY..............................28 3.1 Participants....................................28 3.2 Instrument......................................28 3.2.1 Two Corpus Tools..............................29 3.2.1.1 Netspeak....................................29 3.2.1.2 Linggle.....................................31 3.2.2 Inputlog......................................34 3.2.3 The Error Correction Task.....................35 3.2.4 Questionnaires and Interviews.................38 3.3 Procedures......................................40 3.4 Data Collection and Analysis....................41 CHAPTER 4 RESULTS AND DISCUSSION....................43 4.1 The Type of Error Corrected by Learners.........43 4.1.1 Each Learner’ Correct Answers.................43 4.1.2 Correct Answers of Each Error Type ...........46 4.1.3 Three Types of Changes of Learners' Answers...51 4.2 Learners’ Searching Processes...................52 4.2.1 Operators and Average Queries of Each Item....53 4.2.2 Strategies for DDL............................57 4.3 Learners’ Attitudes.............................58 4.3.1 Learners’ Prior Experiences...................58 4.3.2 Learners’ Attitudes toward Netspeak and Linggle.60 4.3.3 Learner' Attitudes Changes after Using the Corpus Tools...............................................64 4.4 Discussion......................................65 4.4.1 Types of Error that Learners Corrected by Using Corpus Tools........................................66 4.4.1.1 Each Learner’s Correct Answers..............66 4.4.1.2 Correct Answers of Each Error Type..........67 4.4.1.3 Three Kinds of Changes of Learners' Correct Answers.............................................75 4.4.2 Learners’ Searching Processes with Netspeak and Linggle.............................................76 4.4.3 EFL Learners’ Attitudes toward the Two Corpus Tools ....................................................80 4.4.3.1 Target Users and Interfaces of the Two Corpus Tools...............................................80 4.4.3.2 The Operators of the Two Corpus Tools.......83 4.4.3.3 Using the Two Corpus Tools for English Learning ....................................................87 4.4.3.4 Attitudes Changes after Using the Two Corpus Tools...............................................89 CHAPTER 5 CONCLUSION................................93 5.1 Summery.........................................93 5.2 Pedagogical Implications........................96 5.3 Limitations and Suggestions for Future Research.98 REFERENCES.........................................101 APPENDIXES.........................................104

    Boisson, J., Kao, T. H., Wu, J. C., Yen, T. H., & Chang, J. S. 2013. Linggle: A Web-scale Linguistic Search Engine for Words in Context. In Proceedings of ACL 2013 (Demos), pages 139–144.
    Boulton, A. (2007). But where's the proof? The need for empirical evidence for data-driven learning. In Proceedings of the BAAL Annual Conference 2007. (pp. p-13). London: Scitsiugnil Press..
    Boulton, A. (2010). Data‐driven learning: Taking the computer out of the equation. Language Learning, 60(3), 534-572.
    Chen, H. J. H. (2009). Evaluating two web-based grammar checkers-Microsoft ESL Assistant and NTNU statistical grammar checker. Computational Linguistics and Chinese Language Processing, 14(2), 161-180.
    Cobb, T. (1997). From concord to lexicon: Development and test of a corpus-based lexical tutor (Doctoral dissertation, Concordia University Montreal, Quebec, Canada).
    Cobb, T. (1999, November). Giving learners something to do with concordance output. In Proceedings of the ITMELT Conference (pp. 6-7).
    Ferris, D. R. (2006). Does error feedback help student writers? New evidence on the short-and long-term effects of written error correction. Feedback in second language writing: Contexts and issues, 81-104.
    Gaskell, D., & Cobb, T. (2004). Can learners use concordance feedback for writing errors?. System, 32(3), 301-319.
    Granger, S. (1997). On identifying the syntactic and discourse features of participle clauses in academic English: native and non-native writers compared. Studies in English Language and Teaching–In Honour of Flor Aarts. Amsterdam: Rodopi, 185-198.
    Hafner, C. A., & Candlin, C. N. (2007). Corpus tools as an affordance to learning in professional legal education. Journal of English for academic purposes, 6(4), 303-318.
    Johns, T. (1991). Should you be persuaded: Two samples of data-driven learning materials (pp. 1-13). na.
    Kilgarriff, A., & Grefenstette, G. (2003). Introduction to the special issue on the web as corpus. Computational linguistics, 29(3), 333-347.
    Lin, M. C. (2010). A study of Verb-Noun miscollocations based on Taiwanese and Chinese learners’ English corpora. Unpublished master thesis, National Taiwan Normal University, Taipei, Taiwan.
    Liu, Y. C. (2013). A Semi-Automated Corpus-Based Method of Comparing Verb-Noun Collocations Between Native and Non-Native English Speakers. Unpublished master thesis, National Taiwan Normal University, Taipei, Taiwan.
    Mark A. Conroy(2010) Internet tools for language learning: University students taking control of their writing. Australaisan Journal of Educational Technology, 26(6), 861-882
    McEnery, T., & Xiao, R. (2011). What corpora can offer in language teaching and learning. Handbook of research in second language teaching and learning. London: Routledge, 364-380.
    Milton, J. (2006). Resource-rich web-based feedback: Helping learners become independent writers. Feedback in second language writing: Contexts and issues, writers. Feedback in writers. Feedback in second language writing: Contexts and issues, 123-139.
    O'Sullivan, Í., & Chambers, A. (2006). Learners’ writing skills in French: Corpus consultation and learner evaluation. Journal of second language writing, 15(1), 49-68.
    Potthast M., Hagen M., Beyer A., & Stein B. Improving Cloze Test Performance of Language Learners Using Web N-Grams. In Junichi Tsujii and Jan Hajic, editors, 25th International Conference on Computational Linguistics (COLING 14), pages 962-973, August 2014. Association for Computational Linguistics.
    Shei, C. (2008a). Discovering the hidden treasure on the Internet: using Google to uncover the veil of phraseology, Computer Assisted Language Learning, 21:1, 67-85
    Shei, C. (2008b).Web as corpus, Google, and TESOL: A new trilogy. Taiwan Journal of TESOL, 5(2), 1-28.
    Sun, Y. C. (2007). Learner perceptions of a concordancing tool for academic writing. Computer Assisted Language Learning, 20(4), 323-343.
    Yeh, Y. L., Liou, H. C., & Yu, Y. T. (2007). The influence of automatic essay evaluation and bilingual concordancing on EFL students' writing. English Teaching and Learning, 31(1), 117-160.
    Yoon, H. & Hirvela, A. (2004). ESL students attitudes toward corpus use in L2 writing. Journal of Second Language Writing, 13, 257-283.

    下載圖示
    QR CODE