研究生: |
洪楷敦 Hong, Kai-Dun |
---|---|
論文名稱: |
多粒子彩色電子紙之色彩重現晶片設計 Chip Design of Color Reproduction for Multiple Particle Color Electronic Paper |
指導教授: |
高文忠
Kao, Wen-Chung |
口試委員: |
高文忠
Kao, Wen-Chung 林政宏 Lin, Cheng-Hung 范育成 Fan, Yu-Cheng |
口試日期: | 2023/07/20 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 彩色電子紙 、色彩重現 、色域映射 、影像處理晶片 |
英文關鍵詞: | color electronic paper, color reproduction, gamut mapping, image processing chip |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300986 |
論文種類: | 學術論文 |
相關次數: | 點閱:132 下載:46 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般影像與多粒子彩色電子紙之間的色域範圍存在顯著差異,若直接將影像呈現於彩色電子紙上,將引發色彩偏差和失真問題。因此,本研究提出一套獨特的多粒子彩色電子紙色彩重現系統,旨在創造出與原始影像在視覺上極度接近的色彩再現效果。此系統僅需進行少量的色彩量測,即可獲取校正參數,有效提高了在生產線上進行色彩校正的效率。此外,本研究亦考量電子紙的色域特性,提出了嶄新的色域映射演算法以及誤差擴散演算法。實驗結果顯示,提出的方法能夠在彩色電子紙上最大程度地再現對比度與色彩飽和度。最後,為此色彩重現系統設計並實現了一個即時影像處理硬體架構,並提出了一種新的誤差擴散流水線架構,且在FPGA上進行了驗證。
Significant discrepancies exist between the color gamut range of conventional images and that of multi-particle color electronic paper. Displaying images directly on color electronic paper can lead to color inaccuracies and distortions. Therefore, this study proposed a color reproduction system for multi-particle color electronic paper, aiming to create color representations that are visually very similar to the original images. This system requires only fewer color measurements, thereby effectively enhancing the efficiency of color calibration on the production line. In addition, this study considered the color gamut characteristics of electronic paper and introduced new color gamut mapping and error diffusion algorithms. Experimental results show that the proposed methods can maximize the contrast and color saturation on color electronic paper. Finally, a hardware architecture for real-time image processing was designed and implemented for this color reproduction system, and a new pipeline architecture for error diffusion was proposed. The hardware performance was validated on an FPGA.
[1] M. D. Fairchild, Color Appearance Model, 3rd ed., New York, USA: John Wiley, 2013.
[2] R. Bala, “Device characterization,” Digital Color Imaging, G. Sharma, Ed. Boca Raton, FL, USA: CRC Press, Ch. 5, 2017.
[3] J. Morovic, Color Gamut Mapping, Hoboken, NJ: Wiley, 2008.
[4] A.U. Agar, F.A. Baqai, and J.P. Allebach, “Human visual model-based color halftoning,’’ Digital Color Imaging Handbook, G. Sharma, Ed. Boca Raton, FL, USA: CRC Press, Ch. 7, 2017.
[5] W. Kao and J. Tsai, “Driving Method of Three-Particle Electrophoretic Displays,” IEEE Trans. on Electron Devices, vol. 65, no. 3, pp. 1023-1028, Mar. 2018.
[6] S. J. Telfer and M. D. McCreary, “A Full-Color Electrophoretic Display,” SID Symp. Digest Tech. vol. 47, no. 1, pp. 574-577, 2016.
[7] Z. Qin, Y. W. Chen, F. C. Lin, C. M. Hung, H. P. D. Shieh, and Y. P. Huang, “Ambient-light-adaptive image quality enhancement for full-color e-paper displays using a saturation-based tone-mapping method,” Journal of SID, vol. 26, no. 3, pp. 153–163. 2018.
[8] Neugebauer, H. E. J., “Die Theoretischen Grandlagen des Mehrfarben-edruckes,” Zeitschrift Wissenschaften Photography, vol. 36, pp. 73-89, 1937.
[9] M. C. Stone, W. B. Cowan, and J. C. Beatty, “Color gamut mapping and the printing of digital color images,” ACM Trans. Graph., vol. 7, pp. 249-292, Oct. 1988.
[10] C. S. Lee, “Gamut Mapping Algorithm Using Lightness Mapping and Multiple Anchor Points for Linear Tone and Maximum Chroma Reproduction,” Journal of Image Science and Technology, vol. 45, no. 3, pp. 209-223, May-Jun. 2001.
[11] M. Safdar, G. Cui, Y. Kim, and M. Luo, “Perceptually uniform color space for image signals including high dynamic range and wide gamut,” Optics Express, vol. 25, pp. 15131–15151, 2017.
[12] M. R. Luo et al., “A comprehensive test of colour-difference formulae and uniform colour spaces using available visual datasets,” Color Research and Application, vol. 48, no.3, pp. 267-282, 2023.
[13] H. Haneishi, T. Suzuki, N. Shimoyama, and Y. Miyake, “Color digital halftoning taking colorimetric color reproduction into account,” SPIE Journal of Electron. Imaging, vol. 5, pp. 97-106, Jan. 1996.
[14] J. F. Jarvis, C. N. Judice, and W. H. Ninke, “A survey of techniques for the display of continuous tone images on bilevel displays,” Computer Graphics and Image Processing, vol. 5, pp. 13–40, Mar. 1976.
[15] W. C. Kao, C. H. Liu, S. C. Liou, J. C. Tsai and G. H. Hou. “Towards Video Display on Electronic Papers,” IEEE Journal of Display Technology, vol. 12, no. 2, pp. 129-135, Feb. 2016.
[16] P. Li and J. P. Allebach, “Block interlaced pinwheel error diffusion,” SPIE Journal of Electron. Imag., vol. 14, no. 2, pp. 023007, Apr.-Jun. 2005.
[17] Jian S. Dai, “Euler–Rodrigues formula variations, quaternion conjugation and intrinsic connections,” Mechanism and Machine Theory, vol. 92, pp. 144-152, 2015.
[18] J. Morovic and M. R. Luo, “Calculating medium and image gamut boundaries for gamut mapping,” Color Res. Appl., vol. 25, no. 6, pp. 394–401, 2000.
[19] G. J. Braun and M. D. Fairchild, “Image lightness rescaling using sigmoidal contrast enhancement functions,” Journal of Electronic Imaging, vol. 8, no. 4, pp. 380-393, 1999.
[20] T. Kryjak, M. Komorkiewicz, and M. Gorgon, “Real-time background generation and foreground object segmentation for high-definition colour video stream in FPGA device,” Journal of Real-Time Image Processing, vol. 9, no. 1, pp. 61-77, 2012.
[21] M.R. Luo, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Research and Application, vol. 26, no.5, pp. 340-350, 2001.
[22] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
[23] Mehul P. Sampat, “Complex Wavelet Structural Similarity:A New Image Similarity Index,” IEEE Trans. Image Process, vol. 18, no. 11, pp. 2385-2401, Nov. 2009.
[24] P.-C. Hung and R.S. Berns, “Determination of constant hue loci for a CRT gamut and their predictions using color appearance spaces,” Color Research and Application. vol. 20, no. 5, pp. 285-295, 1995.
[25] F. Ebner and M. D. Fairchild, “Finding constant hue surfaces in color space,” Proc. SPIE Color Imaging: Device Independent Color, Color Hardcopy, and Graphic Arts III, vol. 3300, pp. 107-117, 1998
[26] M. Anderson, R. Motta, S. Chandrasekar and M. Stokes, “Proposal for a standard default color space for the internet-sRGB,” IS&T/SID 4th Color Imaging Conference, Scottsdale, pp. 238-246, 1996.
[27] L. W. MacDonald, “Gamut mapping in perceptual color space,” IS&T/SID’s 3rd Color Imaging Conf.: Transforms and Transportability of Color, pp. 193-196, Nov. 1993.
[28] C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” Proceedings of the 24th Color and Imaging Conference, pp. 208-212, 2016.
[29] F. Ebner, M. D. Fairchild. “Development and testing of a color space (IPT)with improved hue uniformity,” IS&T/SID 6th Color Imaging Conference, Scottsdale, pp. 8-13, 1998.
[30] T. Metaxas, “Parallel Digital Halftoning by Error Diffusion,” Proc. of FCRC2003 Paris C. Kanellakis Workshop, San Diego, CA, June, 2003.
[31] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers,” Proc. ACM/SIGDA 6th Int. Symp. on FPGA, pp. 191-200, 1998.
[32] N. Bonnier, F. Schmitt, H. Brettel and S. Berche, “Evaluation of spatial gamut mapping algorithms,” Proc. 14th Color Imag. Conf., pp. 56-61, 2006.
[33] J. Morovic, “To develop a universal gamut mapping algorithm,” Ph.D. dissertation, Univ. Derby, Derby, U.K., 1998.
[34] J. Morovic, “Guidelines for the evaluation of gamut mapping algorithms,” Commission Internationale de L'Eclairage(CIE), vol. 156, Jan. 2004.
[35] ICC, “Specification ICC.1:2022 (Profile version 4.4.0.0),” 2022, retrieved https://www.color.org/icc_specs2.xalter.
[36] Idealliance, “Science Of G7,” retrieved https://connect.idealliance.org/g7/about/scienceofg7.
[37] Microsoft, “WCS Gamut Map Model Profile Schema and Algorithms,” Dec. 2021, retrieved https://learn.microsoft.com/en-us/windows/win32/wcs/wcs-gamut-map-model-profile-schema-and-algorithms.
[38] Idealliance, “Guide to Print Production v13,” 2013.
[39] Björn Ottosson, “A perceptual color space for image processing,” 2020, retrieved https://bottosson.github.io/posts/OKLab/.
[40] Raph Levien, “An interactive review of OKLab,” 2021, retrieved https://raphlinus.github.io/color/2021/01/18/OKLab-critique.html.
[41] C. Lilley, “Better than Lab? Gamut reduction CIE Lab & OKLab,” W3C Workshop on Wide Color Gamut and High Dynamic Range for the Web, July, 2021, retrieved https://www.w3.org/Graphics/Color/Workshop/slides/talk/lilley.
[42] Tab Atkins Jr., Chris Lilley and Lea Verou, “CSS Color Module Level 4 - W3C Candidate Recommendation Draft,” 2022, retrieved https://www.w3.org/TR/css-color-4/.
[43] The Kodak Color Image Dataset, Image Available [Online]. Available: http://r0k.us/graphics/kodak.
[44] The Lagom LCD monitor test pages, Image Available [Online]. Available: http://www.lagom.nl/lcd-test/.
[45] WallpaperAccess Color Image, retrieved https://wallpaperaccess.com/ui-goku.