Author: |
顏采庭 Yen, Tsai-Ting |
---|---|
Thesis Title: |
彩色電子紙之半色調影像處理晶片設計 Chip Design of Video Halftoning for Color Electronic Paper |
Advisor: |
高文忠
Kao, Wen-Chung |
Committee: |
范育成
FAN, YU-CHENG 高文忠 Kao, Wen-Chung 林政宏 Lin, Cheng-Hung |
Approval Date: | 2023/10/06 |
Degree: |
碩士 Master |
Department: |
電機工程學系 Department of Electrical Engineering |
Thesis Publication Year: | 2023 |
Academic Year: | 112 |
Language: | 中文 |
Number of pages: | 56 |
Keywords (in Chinese): | 彩色電子紙 、直接二元搜尋 、影片半色調 、硬體設計 、影像處理晶片 |
Keywords (in English): | Color electronic paper, Direct binary search, Video halftoning, Hardware design, Image processing chip |
Research Methods: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301780 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 133 Downloads: 57 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
本論文探討彩色電子紙在應用半色調影像處理演算法上所遇到的兩個難題,第一個是電子紙平台使用低功耗微控制器難以實現即時影像處理,第二個問題是直接二進制搜尋演算法在減少影片播放時畫面閃爍方面取得了良好效果,但其時間複雜度仍然很高,這使得在現有的電子紙平台上實現該演算法仍然存在困難。為了解決這一問題,本論文提出了一種基於彩色電子紙半色調影像處理的平行化硬體架構,以及一種新的像素搜索次序矩陣。該硬體架構具有良好的自適應性和可擴展性,可以自由地擴展或減少平行化的模塊,以滿足不同系統的需求。此外,該硬體架構已在晶片平台上實現,實驗結果表明該架構可以高效地執行即時影像處理,同時保持影像品質。
This thesis addresses two issues encountered in the application of halftone image processing algorithms on color e-paper. The first challenge is that on e-paper platforms, it is difficult to achieve real-time image processing using low-power microcontrollers. The second issue is its time complexity remains high, making it still challenging to implement this algorithm on existing e-paper platforms. To tackle these problems, this thesis proposes a parallelized hardware architecture for halftone image processing on color e-paper, along with a novel pixel search order matrix. This hardware architecture exhibits excellent adaptability and scalability, allowing for flexible expansion or reduction of parallelized modules to meet the equirements of different systems. Furthermore, the proposed hardware architecture has been implemented on a chip platform, and experimental results demonstrate its efficient execution of real-time image processing while maintaining image quality.
W. Kao and J. Tsai, "Driving Method of Three-Particle Electrophoretic Displays," IEEE Transactions on Electron Devices, vol. 65, no. 3, pp. 1023-1028, March 2018.
E Ink Inc, http://www.eink.com
A. Henzen, J. van de Kamer, T. Nakamura, T. Tsuji, M. Yasui, M. Pitt, G. Duthaler,
K. Amundson, H. Gates, and R. Zehner, “Development of active-matrix electronic-ink displays for handheld devices,” Journal of the Society for Information Display, vol. 12, p. 17, 2004.
何季倫, ”彩色電子紙之影片播放半色調演算法設計,” 國立臺灣師範大學電機工程學系, 2022.
Chen, Y., Au, J., Kazlas, P. et al. “Flexible active-matrix electronic ink display,” Nature 423, 2003.
L. S. R.W. Floyd, “An adaptive algorithm for spatial grey scale,” Proceedings of the Society of Information Display, vol. 17, pp. 75–77, 1976.
J. Jarvis, C. Judice, and W. Ninke, “A survey of techniques for the display of continuous tone pictures on bilevel displays,” Computer Graphics and Image Processing, vol. 5, no. 1, pp. 13–40, 1976.
B. E. Bayer, “An optimum method for two-level rendition of continuous-tone pictures,” Proc.of IEEE Int.conf.on Communications, vol. 1, 1973.
M. Analoui and J. P. Allebach, “Model-based halftoning using direct binary search,” Human Vision, Visual Processing, and Digital Display III (B. E. Rogowitz, ed.), vol. 1666, pp. 96 – 108, International Society for Optics and Photonics, SPIE, 1992.
D. Kacker and J. P. Allebach, “Aperiodic microscreen design using DBS and training,” Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III (G. B. Beretta and R. Eschbach, eds.), vol. 3300, pp. 386 – 397, International Society for Optics and Photonics, SPIE, 1998.
J. P. Allebach and Q. Lin, “Fm screen design using dbs algorithm,” Proceedings of 3rd IEEE International Conference on Image Processing, vol. 1, pp. 549–552 vol.1, 1996.
C. Gotsman, “Halftoning of image sequences,” The Visual Computer, vol. 9, pp. 255–266, 1993.
J. R. Liao, “Theoretical bounds of direct binary search halftoning,” IEEE Transactions on Image Processing, vol. 24, pp. 3478–3487, 2015.
R. A. Ulichney, “Void-and-cluster method for dither array generation,” in Human Vision, Visual Processing, and Digital Display IV (J. P. Allebach and B. E. Rogowitz, eds.),vol. 1913, pp. 332 – 343, International Society for Optics and Photonics, SPIE, 1993.
B. Trager, C. W. Wu, M. Stanich and K. Chandu, "GPU-enabled parallel processing for image halftoning applications," IEEE International Symposium of Circuits and Systems(ISCAS), Rio de Janeiro, Brazil, pp. 1528-1531, 2011.
K. Chandu, M. Stanich, B. Trager and C. W. Wu, "A GPU implementation of color digital halftoning using the Direct Binary Search algorithm," IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea (South), pp. 185-188, 2012.
Ji-Hoon Kang, Thibault Leportier, Myungha Kim, Min-Chul Park, “Non-iterative direct binary search algorithm for fast generation of binary holograms,” Optics and Lasers in Engineering, Pages 312-318, Volume 122, 2019.
D. Kacker and J. P. Allebach, “Aperiodic microscreen design using DBS and training,” in Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III (G. B. Beretta and R. Eschbach, eds.), vol. 3300, pp. 386 – 397, International Society for Optics and Photonics, SPIE, 1998.
Bo Yang, Liang Lei and Junling Yang, "HVS-based structural image quality assessment model," 2008 7th World Congress on Intelligent Control and Automation, Chongqing, pp. 8497-8500, 2008.
A.U. Agar, F.A. Baqai, and J.P. Allebach, “Human visual model-based color halftoning,“ Digital Color Imaging Handbook, G. Sharma, Ed. Boca Raton, FL, USA: CRC Press, Ch. 7, 2017.
Demo video of the method described in this thesis on E-paper: https://youtu.be/2OanZKgyFlo