簡易檢索 / 詳目顯示

研究生: 鐘佩紋
Chong Pei Wen
論文名稱: 探討苦瓜三萜類化合物對UVB刺激人類皮膚角質細胞的保護作用
Protective effect of bitter melon triterpenoids on UVB-irradiated HaCaT cells
指導教授: 蔡帛蓉
Tsai, Po-Jung
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 山苦瓜三萜類化合物紫外光皮膚角質細胞抗發炎
英文關鍵詞: wild bitter melon, triterpenoids, UV irradiation, keratinocytes, anti-inflammatory
DOI URL: https://doi.org/10.6345/NTNU202204038
論文種類: 學術論文
相關次數: 點閱:354下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人體皮膚是保護身體抵抗外來傷害的第一道屏障,紫外線(UV) B(波長280-315 nm)能穿透皮膚表皮層(epidermis),提高皮膚的氧化壓力與DNA損傷,誘導人類皮膚角質細胞(keratinocytes)產生發炎反應,導致皮膚光損傷(photodamage)及光老化(photoaging)。過度UVB曝露引起皮膚角質細胞大量凋亡而形成曬傷細胞(sunburn cells)可能導致皮膚癌。
山苦瓜(Momordica charantia L. var abbreviata Ser.)具有抗糖尿病、抗發炎、抗氧化、抗腫瘤、抗癌等藥理活性。本研究室先前研究發現山苦瓜葉甲醇粗萃物具有抑制酪胺酸酶活性、降低UVB誘導的活性氧物質等作用,因此本研究欲以細胞模式(cell-based assay)探討山苦瓜葉中三萜類化合物(triterpenoids)對於UVB刺激人類皮膚角質細胞(HaCaT細胞株)之保護作用。
本研究製備山苦瓜葉乙醇萃取物並取得5個區分物(fractions),其中fraction 5對於UVB誘導HaCaT傷害具有良好的保護作用。自fraction 5純化得兩種葫蘆烷型(cucurbitane)三萜類化合物,分別為Kuguacin R和3, 7, 25-trihydroxycucurbita-5, 23-dien-19-al (TCD)。實驗結果證實Kuguacin R和TCD顯著提升UVB (20及30 mJ/cm2)照射後HaCaT細胞之存活率。兩種三萜類化合物都能顯著降低UVB誘導之細胞激素IL-1、IL-6、IL-8的生成,抑制MAPK蛋白質磷酸化與NF-κB活化,降低COX-2蛋白質含量並抑制PGE2生成,降低c-Jun蛋白質表現量,而TCD具顯著抑制c-Fos的能力,綜合以上結果,本研究顯示Kuguacin R和TCD具有抑制UVB誘導之發炎反應的功效。此外Kuguacin R和TCD具有抑制caspase-3活化及改善DNA斷裂的現象。另外in vitro經皮輸藥試驗確認Kuguacin R和TCD局部經皮吸收的能力。綜合上述結果,本研究推論Kuguacin R及TCD能減緩UVB造成的皮膚傷害,且有開發應用的潛力。

Ultraviolet B (UVB) radiation plays a vital role in skin photodamage and photoaging. It causes serious inflammation and DNA damage of epidermis, which is the outermost viable layer of the skin and provides skin barrier function. In our previous study, methanolic leaf extract of wild bitter melon (WBM, Momordica charantia L. var abbreviata Seringe) shows anti-tyrosinase activity and significantly reduced UVB-induced reactive oxygen species (ROS) production in vitro.
In this study, we investigated the protective effects of bitter melon triterpenoids on UVB-irradiated HaCaT cells. Two cucurbitane triterpenoids, Kuguacin R and 3, 7, 25-trihydroxycucurbita-5, 23-dien-19-al (TCD) were isolated from ethanolic leaf extract of WBM. HaCaT cells were pretreated for 24h with Kuguacin R or TCD prior to UVB irradiation (20-30 mJ/cm2), except for DNA fragmentation test (100 mJ/cm2). Our results showed that Kuguacin R and TCD inhibited UVB-induced cytotoxicity, and also diminished the productions of interleukin (IL)-1β, IL-6, and IL-8. Furthermore, both compounds significantly reduced phosphorylation of MAPKs, NF-κB activation, c-Jun, clyclooxygenase-2 protein levels, and the prostaglandin E2 production. In addition, both compounds inhibited caspase-3 activation and DNA fragmentation. Besides, Kuguacin R and TCD showed potential effects on percutaneous absorption in vitro. Our findings suggested that WBM triterpenoids, Kuguacin R and TCD may be beneficial for UVB-induced damage of keratinocytes and suggested its potential use in skin UV protection.

第一章 緒論 1 第一節、研究動機與目的 1 第二章 文獻探討 2 第一節、紫外線與皮膚 2 壹、皮膚生理 2 貳、角質層屏障 5 叁、物質穿透皮膚之途徑 6 肆、紫外線輻射 7 伍、UV對人體之重要性 9 第二節、UVB造成人類皮膚角質細胞傷害的機轉及相關因子 10 壹、UV誘導發炎反應 11 貳、UV引起DNA損傷 13 叁、UV誘導訊息傳遞途徑 14 第三節、山苦瓜生理活性 19 壹、山苦瓜簡介 19 貳、山苦瓜成分及營養價值 19 叁、山苦瓜萃取物的生物活性 21 肆、山苦瓜應用於皮膚相關研究 23 第三章 材料與方法 26 第一節、實驗架構 26 第二節、樣品製備 27 壹、山苦瓜葉萃取與純化分離方法 27 貳、山苦瓜葉萃取物萃取率 31 第三節、細胞實驗 32 壹、細胞培養 32 貳、細胞存活率分析(MTT assay) 35 叁、樣品對於UVB誘導HaCaT細胞激素及PGE2生成的影響:酵素免疫分析法(ELISA assay) 37 肆、樣品對UVB誘導HaCaT細胞蛋白質表現的影響:西方點墨法(Western blot) 41 伍、細胞DNA 斷裂分析:DNA洋菜膠體電泳 51 陸、細胞DNA 斷裂分析:ELISA assay 54 第四節、樣品in vitro局部經皮輸藥實驗 56 第五節、統計分析 61 第四章 結果 62 第一節、細胞存活率分析 62 壹、山苦瓜葉萃取物之各區分物對HaCaT細胞存活率的影響 62 貳、山苦瓜葉區分粗萃物對UVB刺激HaCaT細胞之保護作用 63 叁、山苦瓜葉區分萃取物對HaCaT細胞存活率的影響 65 肆、山苦瓜葉區分萃取物對UVB刺激HaCaT細胞之保護作用 66 伍、Kuguacin R及TCD對HaCaT細胞存活率的影響 68 陸、Kuguacin R及TCD對UVB誘導HaCaT細胞之保護作用 69 第二節、Kuguacin R及TCD對於UVB誘導HaCaT細胞激素生成之影響 72 第三節、Kuguacin R及TCD對於UVB誘導HaCaT細胞蛋白質表現之影響 74 壹、模式建立:HaCaT細胞MAPK蛋白質磷酸化之Time course study 74 貳、Kuguacin R及TCD對UVB誘導HaCaT細胞 MAPK蛋白質磷酸化之影響 75 叁、Kuguacin R及TCD對UVB誘導HaCaT細胞 COX-2蛋白質表現及PGE2生成之影響 77 肆、模式建立: UVB誘導HaCaT細胞NF-κB/p-65蛋白質表現之Time course study 79 伍、Kuguacin R及TCD對於UVB誘導HaCaT細胞NF-κB/p-65蛋白質表現量之影響 80 陸、Kuguacin R及TCD對於UVB誘導HaCaT細胞c-Fos和c-Jun蛋白質表現量之影響 81 柒、Kuguacin R及TCD對於UVB誘導HaCaT細胞caspase-3蛋白質表現量之影響 83 第四節、Kuguacin R及TCD對於UVB誘導HaCaT細胞DNA斷裂之影響 84 第五節、Kuguacin R及TCD之in vitro局部輸藥實驗 86 第五章 討論與結論 89 第一節、討論 89 壹、山苦瓜葉萃取物活性成分 89 貳、UVB誘導HaCaT細胞模式建立 90 叁、Kuguacin R及TCD對HaCaT細胞的UVB保護作用 91 肆、Kuguacin R及TCD對UVB誘導HaCaT細胞保護作用之機轉 92 伍、Kuguacin R及TCD之局部經皮輸藥能力 96 第二節、結論 99 第六章 參考文獻 100

全中和. (2001). 珍貴種源山苦瓜. 花蓮區農業專訊, (36), 5-6.
李雯, 陈燕芬, 吴楠, 池墨瑶, &费佳. (2012). 苦瓜叶的化学成分研究. 中草药,43(9), 1712-1715.
翁玟雯,陳宣雅,張展維, &鄭奕帝. (2011). 探討經皮輸藥系統之應用.藥學雜誌, 27(3), 28-33.
黃育亭. (2011). 山苦瓜萃取物抑制黑色素生成及抗光老化效應的評估. 臺灣師範大學人類發展與家庭學系學位論文, 1-153.
Afnan, Q., Adil, M. D., Nissar-Ul, A., Rafiq, A. R., Amir, H. F., Kaiser, P., Gupta, V. K., Vishwakarma, R.,& Tasduq, S. A. (2012). Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts. Phytomedicine, 19(7), 658-664.
Agar, N. S., Halliday, G. M., Barnetson, R. S., Ananthaswamy, H. N., Wheeler, M., & Jones, A. M. (2004). The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4954-4959.
Aggarwal, S., Agarwal, S., & Jalhan, S. (2013). Essential oils as novel human skin penetration enhancer for transdermal drug delivery: a review. International Journal of Pharmacy and Biological Sciences, 4(1), 857-868.
Agrawal, R. C., & Beohar, T. (2010). Chemopreventive and anticarcinogenic effects of Momordica charantia extract. Asian Pacific Journal of Cancer Prevention, 11(2), 371-375.
An, K. P., Athar, M., Tang, X., Katiyar, S. K., Russo, J., Beech, J., Aszterbaum, M., Kopelovich, L., Epstein Jr. E., Mukhtar, H., & Bickers, D. R. (2002). Cyclooxygenase‐2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches. Photochemistry and Photobiology, 76(1), 73-80.
Aoki-Yoshida, A., Aoki, R., & Takayama, Y. (2013). Protective effect of pyruvate against UVB-induced damage in HaCaT human keratinocytes. Journal of Bioscience and Bioengineering, 115(4), 442-448.
Au, T. K., Collins, R. A., Lam, T. L., Ng, T. B., Fong, W. P., & Wan, D. C. C. (2000). The plant ribosome inactivating proteins luffin and saporin are potent inhibitors of HIV-1 integrase. FEBS Letters, 471(2), 169-172.
Bai, L. Y., Chiu, C. F., Chu, P. C., Lin, W. Y., Chiu, S. J., & Weng, J. R. (2016). A triterpenoid from wild bitter gourd inhibits breast cancer cells. Scientific Reports, 6.
Basch, E., Gabardi, S., & Ulbricht, C. (2003). Bitter melon (Momordica charantia): a review of efficacy and safety. American Journal of Health System Pharmacy, 60(4), 356-359.
Battelli, M. G., Polito, L., Bolognesi, A., Lafleur, L., Fradet, Y., & Stirpe, F. (1996). Toxicity of ribosome‐inactivating proteins‐containing immunotoxins to a human bladder carcinoma cell line. International Journal of Cancer, 65(4), 485-490.
Bickers, D. R., & Athar, M. (2006). Oxidative stress in the pathogenesis of skin disease. Journal of Investigative Dermatology, 126(12), 2565-2575.
Biskup, E., Golebiowski, M., Gniadecki, R., Stepnowski, P., & Lojkowska, E. (2012). Triterpenoid α-amyrin stimulates proliferation of human keratinocytes but does not protect them against UVB damage. Acta Biochimica Polonica, 59(2), 255-260.
Braca, A., Siciliano, T., D’Arrigo, M., & Germano, M. P. (2008). Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia, 79(2), 123-125.
Cha, J. W., Piao, M. J., Kim, K. C., Yao, C. W., Zheng, J., Kim, S. M., Hyun, C.L., Ahn, Y. S.,& Hyun, J. W. (2014). The polyphenol chlorogenic acid attenuates UVB-mediated oxidative stress in human HaCaT keratinocytes. Biomolecules & Therapeutics, 22(2), 136-142.
Chaudhari, B. P., Chaware, V. J., Joshi, Y. R., & Biyani, K. R. (2009). Hepatoprotective activity of hydroalcoholic extract of Momordica charantia Linn. leaves against carbon tetrachloride induced hepatopathy in rats. International Journal of ChemTech Research, 1(2), 355-358.
Chen, J. C., Chiu, M. H., Nie, R. L., Cordell, G. A., & Qiu, S. X. (2005). Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural Product Reports, 22(3), 386-399.
Chen, J. C., Liu, W. Q., Lu, L., Qiu, M. H., Zheng, Y. T., Yang, L. M., Zhang, X. M., Zhou, L., & Li, Z. R. (2009). Kuguacins F–S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry, 70(1), 133-140.
Chen, W., & Bowden, G. T. (1999). Activation of p38 MAP kinase and ERK are required for ultraviolet-B induced c-fos gene expression in human keratinocytes. Oncogene, 18(52), 7469-7476.
Chen, W., Tang, Q., Gonzales, M. S., & Bowden, G. T. (2001). Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene, 20(29), 3921-3926.
Cheng, H. L., Huang, H. K., Chang, C. I., Tsai, C. P., & Chou, C. H. (2008). A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. Journal of Agricultural and Food Chemistry, 56(16), 6835-6843.
Cho, J. W., Park, K., Kweon, G. R., Jang, B. C., Baek, W. K., Suh, M. H., Kim, C. W., Lee, K. S.,& Suh, S. I. (2005). Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1. Experimental and Molecular Medicine, 37(3), 186-192.
Cho, K. A., Suh, J. W., Lee, K. H., Kang, J. L., & Woo, S. Y. (2012). IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. International Immunology, 24(3), 147-158.
Chuang, C. Y., Hsu, C., Chao, C. Y., Wein, Y. S., Kuo, Y. H., & Huang, C. J. (2006). Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPAR-α in bitter gourd (Momordica charantia L.). Journal of Biomedical Science, 13(6), 763-772.
Clydesdale, G. J., Dandie, G. W., & Muller, H. K. (2001). Ultraviolet light induced injury: immunological and inflammatory effects. Immunology and Cell Biology, 79(6), 547-568.
Dar, U. K., Owais, F., Ahmad, M., & Rizwani, G. H. (2014). Biochemical analysis of the crude extract of Momordica charantia (L.). Pakistan Journal of Pharmaceutical Sciences, 27(6 Spec No.), 2237-2240.
D'Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222-12248.
Evans, J. A., & Johnson, E. J. (2010). The role of phytonutrients in skin health. Nutrients, 2(8), 903-928.
Fang, J. Y., & Leu, Y. L. (2006). Prodrug strategy for enhancing drug delivery via skin. Current Drug Discovery Technologies, 3(3), 211-224.
Fernau, N. S., Fugmann, D., Leyendecker, M., Reimann, K., Grether-Beck, S., Galban, S., Ale-Agha, N., Krutmann, J., & Klotz, L. O. (2010). Role of HuR and p38 MAPK in ultraviolet B-induced post-transcriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT. Journal of Biological Chemistry,285(6), 3896-3904.
Gonzales, M., & Bowden, G. T. (2002). The role of PI 3-kinase in the UVB-induced expression of c-fos. Oncogene, 21(17), 2721-2728.
Grover, J. K., & Yadav, S. P. (2004). Pharmacological actions and potential uses of Momordica charantia: a review. Journal of Ethnopharmacology, 93(1), 123-132.
Gurbuz, I., Akyuz, C., Yesilada, E., &Sener, B. (2000). Anti-ulcerogenic effect of Momordica charantia L. fruits on various ulcer models in rats. Journal of Ethnopharmacology, 71(1), 77-82.
Hadgraft, J., & Lane, M. E. (2011). Skin: the ultimate interface. Physical Chemistry Chemical Physics, 13(12), 5215-5222.
Haque, M. E., Alam, M. B., & Hossain, M. S. (2011). The efficacy of cucurbitane type triterpenoids, glycosides and phenolic compounds isolated from Momordica charantia: a review. IJPSR, 2(5), 1135-1146.
Harinantenaina, L., Tanaka, M., Takaoka, S., Oda, M., Mogami, O., Uchida, M., & Asakawa, Y. (2006). Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chemical and Pharmaceutical Bulletin, 54(7), 1017-1021.
Hazarika, R., Parida, P., Neog, B., & Yadav, R. N. S. (2012). Binding energy calculation of GSK-3 protein of human against some anti-diabetic compounds of Momordica charantia Linn.(Bitter melon). Bioinformation, 8(6), 251-254.
He, Y. Y., Huang, J. L., & Chignell, C. F. (2004). Delayed and sustained activation of extracellular signal-regulated kinase in human keratinocytes by UVA implications in carcinogenesis. Journal of Biological Chemistry, 279(51), 53867-53874.
Henseleit, U., Rosenbach, T., & Kolde, G. (1996). Induction of apoptosis in human HaCaT keratinocytes. Archives of Dermatological Research, 288(11), 676-683.
Horax, R., Hettiarachchy, N., & Islam, S. (2005). Total phenolic contents and phenolic acid constituents in 4 varieties of bitter melons (Momordica charantia) and antioxidant activities of their extracts. Journal of Food Science, 70(4), C275-C280.
Hsu, C., Tsai, T. H., Li, Y. Y., Wu, W. H., Huang, C. J., & Tsai, P. J. (2012). Wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) extract and its bioactive components suppress Propionibacterium acnes-induced inflammation. Food Chemistry, 135(3), 976-984.
Huang, P. L., Sun, Y., Chen, H. C., Kung, H. F., Huang, P. L., & Lee-Huang, S. (1999). Proteolytic fragments of anti-HIV and anti-tumor proteins MAP30 and GAP31 are biologically active. Biochemical and Biophysical Research Communications, 262(3), 615-623.
Huang, W. C., Tsai, T. H., Huang, C. J., Li, Y. Y., Chyuan, J. H., Chuang, L. T., & Tsai, P. J. (2015). Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food & Function, 6(8), 2550-2560.
Hwang, J. K. (2010). Effects of macelignan isolated from Myristica fragrans Houtt. on UVB-induced matrix metalloproteinase-9 and cyclooxygenase-2 in HaCaT cells. Journal of Dermatological Science, 57(2), 114-122.
Hwang, Y. P., Oh, K. N., Yun, H. J., & Jeong, H. G. (2011). The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signalling in HaCaT cells. Journal of Dermatological Science, 61(1), 23-31.
Ichihashi, M., Ueda, M., Budiyanto, A., Bito, T., Oka, M., Fukunaga, M., Tsuru, K.,& Horikawa, T. (2003). UV-induced skin damage. Toxicology, 189(1), 21-39.
Isoherranen, K., Westermarck, J., Kahari, V. M., Jansen, C., & Punnonen, K. (1998). Differential regulation of the AP-1 family members by UV irradiation in vitro and in vivo. Cellular Signalling, 10(3), 191-195.
Jungersted, J. M., Hellgren, L. I., Jemec, G. B., & Agner, T. (2008). Lipids and skin barrier function–a clinical perspective. Contact Dermatitis, 58(5), 255-262.
Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. The Journal of Immunology, 188(1), 21-28.
Kang, L., Kumar, V. H., Lim, P. F. C., Cheong, H. H., & Chan, S. Y. (2013). Terpenes and improvement of transdermal drug delivery. In Natural Products (pp. 3757-3774). Springer Berlin Heidelberg.
Kannan, S., & Lim, H. W. (2014). Photoprotection and vitamin D: a review. Photodermatology, Photoimmunology & Photomedicine, 30(2-3), 137-145.
Kim, A. L., Labasi, J. M., Zhu, Y., Tang, X., McClure, K., Gabel, C. A., Athar, M.,& Bickers, D. R. (2005). Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless mice. Journal of Investigative Dermatology, 124(6), 1318-1325.
Kim, H. H., Shin, C. M., Park, C. H., Kim, K. H., Cho, K. H., Eun, H. C., & Chung, J. H. (2005). Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. Journal of Lipid Research, 46(8), 1712-1720.
Kim, S. B., Kang, O. H., Joung, D. K., Mun, S. H., Seo, Y. S., Cha, M. R., Ryu, S. Y., Shin, D. W., & Kwon, D. Y. (2013). Anti-inflammatory effects of tectroside on UVB-induced HaCaT cells. International Journal of Molecular Medicine, 31(6), 1471-1476.
Ko, H. H., Hung, C. F., Wang, J. P., & Lin, C. N. (2008). Antiinflammatory triterpenoids and steroids from Ganoderma lucidum and G. tsugae. Phytochemistry, 69(1), 234-239.
Kobori, M., Ohnishi-Kameyama, M., Akimoto, Y., Yukizaki, C., & Yoshida, M. (2008). α-Eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. Journal of Agricultural and Food Chemistry,56(22), 10515-10520.
Kulka, M. (2013). Mechanisms and treatment of photoaging and photodamage. Using Old Solutions to New Problems–Natural Drug Discovery in the 21st Century, 255-276.
Lee S, Y., Eom S, H.,Kim Y, K., Park N, I., & Park S, U. (2009). Cucurbitane-type triterpenoids in Momordica charantia Linn. Journal of Medicinal Plants Research, 3(13), 1264-1269.
Lee, C. H., Wu, S. B., Hong, C. H., Yu, H. S., & Wei, Y. H. (2013). Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: the implication in UV-based phototherapy. International Journal of Molecular Sciences, 14(3), 6414-6435.
Lee, C., Park, G. H., Ahn, E. M., Kim, B. A., Park, C. I., & Jang, J. H. (2013). Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia, 86, 54-63.
Leung, L., Birtwhistle, R., Kotecha, J., Hannah, S., & Cuthbertson, S. (2009). Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. British Journal of Nutrition, 102(12), 1703-1708.
Liaw, C. C., Huang, H. C., Hsiao, P. C., Zhang, L. J., Lin, Z. H., Hwang, S. Y., Hsu, F. L.,& Kuo, Y. H. (2015). 5β, 19-Epoxycucurbitane triterpenoids from Momordica charantia and their anti-inflammatory and cytotoxic activity. Planta Medica,81(1), 62-70.
Lii, C. K., Chen, H. W., Yun, W. T., & Liu, K. L. (2009). Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviata Ser.) fruit extracts on inflammatory responses in RAW 264.7 macrophages. Journal of Ethnopharmacology, 122(2), 227-233.
Limtrakul, P., Pitchakarn, P., & Suzuki, S. (2013). Kuguacin J, a triterpenoid from Momordica charantia Linn: acomprehensive review of anticarcinogenic properties. Intech Open Access Publisher.
Liu, X., Zhang, Z., Li, P., Zhu, L., Wang, Y., & Wang, C. (2009). Polypeptide from Chlamys farreri modulates UVB-induced activation of NF-κB signaling pathway and protection HaCaT cells from apoptosis. Regulatory Peptides,153(1), 49-55.
Lopez-Camarillo, C., Arechaga Ocampo, E., Lopez Casamichana, M., Perez-Plasencia, C., Alvarez-Sanchez, E., & Marchat, L. A. (2011). Protein kinases and transcription factors activation in response to UV-radiation of skin: implications for carcinogenesis. International Journal of Molecular Sciences, 13(1), 142-172.
Melnikova, V. O., & Ananthaswamy, H. N. (2005).Cellular and molecular events leading to the development of skin cancer. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 571(1), 91-106.
Mescher, A. L. (2010). Junqueira's Basic Histology: Text & Atlas (Vol. 12). New York: McGraw-Hill Medical.
Moss, G. P., Gullick, D. R., & Wilkinson, S. C. (2015). Skin structure and physiology. In Predictive Methods in Percutaneous Absorption (pp. 1-24). Springer Berlin Heidelberg.
Muthusamy, V., & Piva, T. J. (2010). The UV response of the skin: a review of the MAPK, NF-κB and TNF-α signal transduction pathways. Archives of Dermatological Research, 302(1), 5-17.
Muthusamy, V., & Piva, T. J. (2013). A comparative study of UV-induced cell signalling pathways in human keratinocyte-derived cell lines. Archives of Dermatological Research, 305(9), 817-833.
Nakata, T., Yamada, T., Taji, S., Ohishi, H., Wada, S. I., Tokuda, H., Sakuma, K.,& Tanaka, R. (2007). Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorganic &Medicinal Chemistry, 15(1), 257-264.
Nerurkar, P. V., Lee, Y. K., Linden, E. H., Lim, S., Pearson, L., Frank, J., & Nerurkar, V. R. (2006). Lipid lowering effects of Momordica charantia (Bitter Melon) in HIV‐1‐protease inhibitor‐treated human hepatoma cells, HepG2. British Journal of Pharmacology, 148(8), 1156-1164.
Nishimura, N., Tohyama, C., Satoh, M., Nishimura, H., & Reeve, V. E. (1999). Defective immune response and severe skin damage following UVB irradiation in interleukin-6-deficient mice. Immunology, 97(1), 77-83.
Olson, E. R., Melton, T., Dickinson, S. E., Dong, Z., Alberts, D. S., & Bowden, G. T. (2010). Quercetin potentiates UVB-Induced c-Fos expression: implications for its use as a chemopreventive agent. Cancer Prevention Research, 3(7), 876-884.
Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320-330.
Patil, U. K., & Saraogi, R. (2014). Natural products as potential drug permeation enhancer in transdermal drug delivery system. Archives of Dermatological Research, 306(5), 419-426.
Pattison, D. I., & Davies, M. J. (2006). Actions of ultraviolet light on cellular structures. In Cancer: Cell Structures, Carcinogens and Genomic Instability (pp. 131-157). Birkhauser Basel.
Peus, D., Vasa, R. A., Beyerle, A., Meves, A., Krautmacher, C., & Pittelkow, M. R. (1999). UVB activates ERK1/2 and p38 signalling pathways via reactive oxygen species in cultured keratinocytes. Journal of Investigative Dermatology,112(5), 751-756.
Piskin, A., Altunkaynak, B. Z., Tumentemur, G., Kaplan, S., Yazici, O. B., & Hokelek, M. (2012). The beneficial effects of Momordica charantia (bitter gourd) on wound healing of rabbit skin. Journal of Dermatological Treatment, 25(4), 350-357.
Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26(11), 1261-1268.
Proksch, E., Brandner, J. M., & Jensen, J. M. (2008). The skin: an indispensable barrier. Experimental Dermatology, 17(12), 1063-1072.
Pupe, A., Degreef, H., & Garmyn, M. (2003). Induction of tumor necrosis factor–α by UVB: a role for reactive oxygen intermediates and eicosanoids. Photochemistry and Photobiology, 78(1), 68-74.
Ramos, M. C., Steinbrenner, H., Stuhlmann, D., Sies, H., & Brenneisen, P. (2004). Induction of MMP-10 and MMP-1 in a squamous cell carcinoma cell line by ultraviolet radiation. Biological Chemistry, 385(1), 75-86.
Ravi, R., & Piva, T. J. (2013). The role of furin in the development of skin cancer. Intech Open Access Publisher.
Sharma, S., Tandon, S., & Semwal, B. (2014).Momordica charantia Linn.: acomprehensive review on bitter remedy. Journalof Pharmaceutical Research & Opinion, 1(2).
Shaulian, E. (2010). AP-1—the Jun proteins: oncogenes or tumor suppressors in disguise?. Cellular Signalling, 22(6), 894-899.
Shin, S. W., Jung, E., Kim, S., Lee, K. E., Youm, J. K., & Park, D. (2013). Antagonist effects of veratric acid against UVB-induced cell damages. Molecules, 18(5), 5405-5419.
Silveira, S., Pedroso, J. E., & Myaki Pedroso, D. M. (2014). UV light and skin aging. Reviews on Environmental Health, 29(3), 243-254.
Singh, A., Singh, S. P., & Bamezai, R. (1998). Momordica charantia (Bitter Gourd) peel, pulp, seed and whole fruit extract inhibits mouse skin papillomagenesis. Toxicology Letters, 94(1), 37-46.
Slominski, A. T., Zmijewski, M. A., Skobowiat, C., Zbytek, B., Slominski, R. M., & Steketee, J. D. (2012). Introduction (pp. 1-6). Springer Berlin Heidelberg.
Sobolewski, C., Cerella, C., Dicato, M., Ghibelli, L., & Diederich, M. (2010). The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. International Journal of Cell Biology, 2010, 215158.
Sun, Y., Huang, P. L., Li, J. J., Huang, Y. Q., Zhang, L., Huang, P. L., & Lee-Huang, S. (2001). Anti-HIV agent MAP30 modulates the expression profile of viral and cellular genes for proliferation and apoptosis in AIDS-related lymphoma cells infected with Kaposi's sarcoma-associated virus. Biochemical and Biophysical Research Communications, 287(4), 983-994.
Svobodova, A., Psotova, J., & Walterova, D. (2003). Natural phenolics in the prevention of UV-induced skin damage. A review. Biomedical papers of the Medical Faculty of the University Palacky,Olomouc, Czech Republic, 147(2), 137-45.
Svobodova, A., Walterova, D., & Vostalova, J. (2006). Ultraviolet light induced alteration to the skin. Biomedical Papers-Palacky University in Olomouc, 150(1), 25.
Szaefer, H., Cichocki, M., Krajka-Kuzniak, V., Stefanski, T., Sobiak, S., Licznerska, B., & Baer-Dubowska, W. (2014). The effect of resveratrol and its methylthio-derivatives on NF-κB and AP-1 signalling pathways in HaCaT keratinocytes. Pharmacological Reports, 66(5), 732-740.
Thenmozhi, A. J., & Subramanian, P. (2013). Momordica charantia (bitter melon) decreases serum/tissue lipid parameters in hyperammonemic rats. International Journal of Nutrition, Pharmacology, Neurological Diseases, 3(3), 249.
Tongkao-on, W., Gordon-Thomson, C., Dixon, K. M., Song, E. J., Luu, T., Carter, S. E., Sequeira, V. B., Reeve, V. E.,& Mason, R. S. (2013). Novel vitamin D compounds and skin cancer prevention. Dermato-Endocrinology, 5(1), 20-33.
Trautinger, F. (2001). Mechanisms of photodamage of the skin and its functional consequences for skin ageing. Clinical and Experimental Dermatology, 26(7), 573-577.
Tsai, C. H., Chen, E. C., Tsay, H. S., & Huang, C. J. (2012). Wild bitter gourd improves metabolic syndrome: a preliminary dietary supplementation trial. Nutrition Journal, 11(1), 4.
Tsai, T. H., Huang, C. J., Wu, W. H., Huang, W. C., Chyuan, J. H., & Tsai, P. J. (2014). Antioxidant, cell-protective, and anti-melanogenic activities of leaf extracts from wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) cultivars. Botanical Studies, 55(1), 78.
Tsai, T. H., Huang, W. C., Ying, H. T., Kuo, Y. H., Shen, C. C., Lin, Y. K., & Tsai, P. J. (2016). Wild bitter melon leaf extract inhibits Porphyromonas gingivalis-induced inflammation: identification of active compounds through bioassay-guided isolation. Molecules, 21(4), 454.
Tsoyi, K., Park, H. B., Kim, Y. M., Chung, J. I., Shin, S. C., Lee, W. S., Seo, H. G., Lee, J. H., Chang, K. C., & Kim, H. J. (2008). Anthocyanins from black soybean seed coats inhibit UVB-induced inflammatory cylooxygenase-2 gene expression and PGE2 production through regulation of the nuclear factor-κB and phosphatidylinositol 3-kinase/Akt pathway. Journal of Agricultural and Food Chemistry, 56(19), 8969-8974.
Van Laethem, A., Garmyn, M., & Agostinis, P. (2009). Starting and propagating apoptotic signals in UVB irradiated keratinocytes. Photochemical & Photobiological Sciences, 8(3), 299-308.
Veratti, E., Rossi, T., Giudice, S., Benassi, L., Bertazzoni, G., Morini, D., Azzoni, P., Bruni, E., Giannetti.A.,& Magnoni, C. (2011). 18β-glycyrrhetinic acid and glabridin prevent oxidative DNA fragmentation in UVB-irradiated human keratinocyte cultures. Anticancer Research, 31(6), 2209-2215.
Wang, H. X., & Ng, T. B. (2001). Studies on the anti-mitogenic, anti-phage and hypotensive effects of several ribosome inactivating proteins. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 128(3), 359-366.
Wu, C. S., Lan, C. C. E., Chiou, M. H., & Yu, H. S. (2006). Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125FAK on melanocytes. Acta Dermato-Venereologica, 86(6), 498-502.
Wu, S. J., & Ng, L. T. (2008). Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. LWT-Food Science and Technology, 41(2), 323-330.
Yadav, U. C., Moorthy, K., & Baquer, N. Z. (2005). Combined treatment of sodium orthovanadate and Momordica charantia fruit extract prevents alterations in lipid profile and lipogenic enzymes in alloxan diabetic rats. Molecular and Cellular Biochemistry, 268(1), 111-120.
Yoshizumi, M., Nakamura, T., Kato, M., Ishioka, T., Kozawa, K., Wakamatsu, K., & Kimura, H. (2008). Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biology International, 32(11), 1405-1411.
Zeng, X. Y., Wang, Y. P., Cantley, J., Iseli, T. J., Molero, J. C., Hegarty, B. D., Kraegen, E. W., Ye, Y.,& Ye, J. M. (2012). Oleanolic acid reduces hyperglycemia beyond treatment period with Akt/FoxO1-induced suppression of hepatic gluconeogenesis in type-2 diabetic mice. PLoS One, 7(7), e42115.
Zhang, J., Huang, Y., Kikuchi, T., Tokuda, H., Suzuki, N., Inafuku, K. I., Miura, M., Motohashi, S., Suzuki, T., & Akihisa, T. (2012). Cucurbitane triterpenoids from the leaves of Momordica Charantia, and their cancer chemopreventive effects and cytotoxicities. Chemistry &Biodiversity, 9(2), 428-440.

下載圖示
QR CODE