Basic Search / Detailed Display

Author: 毛語葳
Mao, Yu-Wei
Thesis Title: 小根蒜萃取物對葡聚醣硫酸鈉誘導小鼠急性腸炎之保護效應
Protective effect of Allium macrostemon Bunge extract against acute colitis in dextran sulfate sodium-treated mice
Advisor: 蔡帛蓉
Tsai, Po-Jung
侯又禎
Hou, Yu-Chen
Committee: 蔡帛蓉
Tsai, Po-Jung
侯又禎
Hou, Yu-Chen
陳玉華
Chen, Yue-Hwa
龔秀妮
Kung, Hsiu-Ni
Approval Date: 2022/07/14
Degree: 碩士
Master
Department: 營養科學碩士學位學程
Graduate Program of Nutrition Science
Thesis Publication Year: 2022
Academic Year: 110
Language: 中文
Number of pages: 113
Keywords (in Chinese): 小根蒜發炎性腸道疾病葡聚醣硫酸鈉抗發炎
Keywords (in English): Allium macrostemon Bunge, inflammatory bowel disease, dextran sodium sulfate, anti-inflammatory
Research Methods: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201368
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 189Downloads: 5
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 發炎性腸道疾病 (inflammatory bowel disease) 是反覆發炎的慢性疾病,其致病因子涉及基因、環境、腸道上皮損傷、腸道菌群失衡與異常的免疫反應等。T細胞及其相關細胞激素的調節與平衡,為維持腸道免疫恆定之重要因子。本研究首先對於台灣花蓮原住民作物「火蔥」進行植株特徵比對及基因序列分析,結果鑑定此「火蔥」為小根蒜 (Allium macrostemon Bunge) 的鱗莖。小根蒜屬於石蒜科蔥屬之藥食兩用的植物,將小根蒜的鱗莖進行蒸煮、乾燥後做為傳統中藥的「薤白」。本研究以葡聚醣硫酸鈉 (dextran sulfate sodium, DSS) 誘導C57BL/6J小鼠急性腸炎模式,探討小根蒜的新鮮鱗莖萃取物是否具緩解腸炎之能力。首先製備小根蒜的水 (aqueous extract, AE) 與50%乙醇萃取物 (50% hydro-ethanolic extract, HEE) 進行實驗一,結果發現預先管餵小根蒜HEE (200 mg/kg/day),可降低DSS引致急性腸炎小鼠的血液之嗜中性白血球次群、減少大腸組織免疫細胞浸潤、維持完整腸道上皮,具緩解急性腸炎的潛力;然而AE則無此效用。接續進行實驗二,探討補充小根蒜HEE減輕急性腸炎之效用與機轉。C57BL/6J小鼠分為4組:正常控制 (NC) 組、腸炎控制 (DC) 組,與腸炎並介入250 mg HEE/kg/day (DL) 組或500 mg HEE/kg/day (DH) 組。NC和DC組預先管餵水,而DL和DH組預先管餵HEE,經一週後再給予3% DSS飲水引致急性腸炎並持續管餵HEE,經一週後犧牲。實驗結果當與DC組比較,DL和DH組顯著降低血漿haptoglobin濃度;在血液嗜中性白血球、發炎性單核球和調節性T細胞之比率皆降低,以及淋巴球比率上升;脾臟調節型T細胞與輔助型T細胞17相關細胞激素與轉錄因子forkhead box p 3、interleukin (IL)-10、transforming growth factor-1、IL-17A和retinoic acid receptor-related orphan receptor gamma-t之mRNA表現量降低;大腸組織促發炎相關基因C-C chemokine ligand 2、tumor necrosis factor-和C-X-C motif chemokine ligand-1與腸道黏膜屏障相關保護因子trefoil factors 3之mRNA表現量,以及大腸沖洗液Immunoglobulin G的濃度皆降低,並發現DL和DH組有較低的疾病活動指數與大腸水腫程度,另於大腸組織切片觀察其腸道免疫細胞浸潤程度較低,且具有相對較完整的隱窩與腸道上皮。本研究結果顯示,預防性給予小根蒜HEE可透過免疫調節與抑制發炎反應,具有緩解急性腸炎的潛力。

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine. The pathogenesis of IBD is complex, including gene, environment, epithelial barrier disruption, gut microbiota dysbiosis and immune response dysregulation. T cells play an important role in maintaining intestinal immunity underling IBD pathogenesis. Allium macrostemon Bunge is a traditional crop from the indigenous people in Taiwan. The purpose of this study was to evaluate whether the bulb extract of A. macrostemon Bunge extract attenuates dextran sulfate sodium (DSS)-induced acute colitis in C57BL/6J mice. Aqueous extract (AE) and hydro-ethanolic extract (HEE; 50% ethanol) of A. macrostemon bulb were prepared. The preliminary experiment showed that HEE supplementation (200 mg/kg/day) alleviated DSS-induced murine acute colitis, but AE did not. Subsequently, the protective effect and mechanism of HEE against DSS-induced acute colitis were investigated. C57BL/6J mice were divided into normal control (NC) group, DSS-treated control (DC) group, DSS+ 250 mg/kg HEE (DL) group and DSS+ 500 mg/kg HEE (DH) group. All animals were given free access to standard chow diet. Mice in the DC, DL, and DH groups received drinking water containing 3% (w/v) DSS for 7 days to induce acute colitis. The DL and DH groups received HEE by daily oral gavage for one week before starting the DSS treatment and throughout the entire experimental period. Results showed that the disease activity index, plasma haptoglobin, immunoglobulin G of colon lavage fluid, the percentage of circulating neutrophils, inflammatory monocyte and regulatory T cells levels in blood were lower, whereas the lymphocyte populations in blood were higher in the DL and DH groups, as compared with the DC group. HEE supplementation reduced mRNA levels of forkhead box p 3, interleukin (IL)-10, transforming growth factor-1, IL-17A and retinoic acid receptor-related orphan receptor gamma-t in spleens and also down-regulated the C-C chemokine ligand-2, tumor necrosis factor-C-X-C motif chemokine ligand-1 and trefoil factors 3 in colons. The histological observation of the colon further implied that HEE could reduce inflammatory cell infiltration and restore intestinal epithelial barrier integrity. In conclusion, HEE could significantly alleviate the signs and symptoms of the DSS-induced acute colitis by modulating immune responses and suppressing expression of inflammatory mediators.

    中文摘要II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 縮寫表 X 第一章 文獻回顧 1 第一節 腸道與免疫系統 1 一、 腸道功能與結構 1 二、 先天性免疫反應 (innate immunity) 2 三、 後天性免疫反應 (adaptive immunity) 7 第二節 發炎性腸道疾病 (inflammatory bowel diseases, IBD) 10 一、 IBD簡介與流行病學 10 二、 IBD致病因子與機轉 11 三、 改善與治療IBD的策略 15 四、 葡聚醣硫酸鈉 (dextran sulfate sodium, DSS) 誘發IBD模式 16 第三節 小根蒜 18 第二章 研究動機與目的 21 第三章 材料與方法 22 第一節 實驗材料與儀器設備 22 一、 小根蒜 22 二、 實驗試劑與材料 24 三、 實驗抗體 25 四、 實驗分析套組 26 五、 實驗設備 26 第二節 小根蒜萃取物製備 27 第三節 營養組成與分析 28 一、 營養成分分析 28 二、 氣相層析質譜儀 (gas chromatography–mass spectrometry) 定量揮發性組成分 28 三、 液相層析質譜儀 (liquid chromatography–mass spectrometry) 鑑定組成分 29 第四節 動物實驗 30 一、 動物飼養與實驗流程 30 二、 飼料成分 34 三、 檢體採集與處理 35 四、 分析方法與項目 36 第五節 統計分析 51 第四章 結果 52 第一節 營養組成 52 第二節 氣相層析質譜儀定量結果 53 第三節 液相層析串聯質譜儀鑑定結果 56 第四節 實驗 (一) 60 一、 飲水與體重變化 60 二、 疾病活動指數 62 三、 脾臟重量 63 四、 大腸組織 64 五、 血液先天性免疫細胞之比率 66 六、 血液淋巴球之比率 67 七、 脾臟淋巴球之比率 68 八、 大腸組織促發炎相關因子之mRNA表現量 69 九、 大腸組織切片 70 第五節 實驗 (二) 71 一、 飲水與體重變化 71 二、 疾病活動指數 73 三、 脾臟重量 74 四、 大腸組織 75 五、 血漿結合球蛋白 (haptoglobin) 與CLF的IgG濃度 77 六、 血液先天性免疫細胞之比率 78 七、 血液淋巴球之比率 79 八、 脾臟淋巴球之比率 80 九、 脾臟Th17與Treg細胞相關細胞激素及轉錄因子之mRNA表現量 81 十、 大腸組織促發炎相關因子之mRNA表現量 83 十一、 腸道黏膜屏障相關保護因子之mRNA表現量 84 十二、 大腸組織切片及損傷程度評分 85 第五章 討論 87 第一節 小根蒜之組成分 88 第二節 小根蒜對於腸道發炎之影響 89 第三節 小根蒜對於腸道黏膜屏障之影響 90 第四節 小根蒜對於先天性免疫之影響 91 第五節 小根蒜對於後天性免疫之影響 93 第六章 結論 96 第七章 參考文獻 99

    《中國植物誌》。錢崇澍、陳煥鏞 (1980)。第十四卷265-266。科學出版社。
    藥用植物圖像數據庫。中 (2022)。薤白Xiebai。
    吳雪月 (2021)。台灣新野菜主義 (阿美族語版; U tadadateng nu Pangcah),第1版。邦城文化事業股份有限公司。
    全中和 (2003)。花蓮阿美族的特有蔬菜-火蔥。花蓮區農業專訊。44:19-20。
    游之穎、詹庭筑、張育森等人 (2020)。宜花地區野菜資源盤點與營養價值初探。花蓮區農業改良場研究彙報 (Bull. Hualien DARES)。39:13-33。
    黃涵、洪立 (1988)。蔥類:洋蔥。台灣蔬菜彩色圖說。97-99。
    彭穎、黃晴、李珂 (2020)。發酵對小根蒜揮發性物質、有機硫化合物及其抗氧化活性的影響。食品工業科技。第41卷,第22期。
    Abraham, C., & Cho, J. H. (2009). Inflammatory bowel disease. New England Journal of Medicine, 361(21), 2066-2078.
    Ahluwalia, B., Moraes, L., Magnusson, M. K., & Öhman, L. (2018). Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scandinavian Journal of Gastroenterology, 53(4), 379-389.
    Alex, P., Zachos, N. C., Nguyen, T., Gonzales, L., Chen, T.-E., Conklin, L. S., Centola, M., & Li, X. (2008). Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflammatory Bowel Diseases, 15(3), 341-352.
    Ananthakrishnan, A. N. (2015). Epidemiology and risk factors for IBD. Nature Reviews Gastroenterology & Hepatology, 12(4), 205-217.
    Arsenio, J. (2020). Single-cell analysis of CD8 T lymphocyte diversity during adaptive immunity. WIREs Systems Biology and Medicine, 12(2), e1475.
    Asemani, Y., Zamani, N., Bayat, M., & Amirghofran, Z. (2019). Allium vegetables for possible future of cancer treatment. Phytotherapy Research, 33(12), 3019-3039.
    Astó, E., Méndez, I., Audivert, S., Farran-Codina, A., & Espadaler, J. (2019). The efficacy of probiotics, prebiotic inulin-type fructans, and synbiotics in human ulcerative colitis: a systematic review and meta-analysis. Nutrients, 11(2), 293.
    Awane, M., Andres, P. G., Li, D. J., & Reinecker, H.-C. (1999). NF-B-inducing kinase is a common mediator of IL-17-, TNF--, and IL-1-induced chemokine promoter activation in intestinal epithelial cells. The Journal of Immunology, 162(9), 5337-5344.
    Ayaka Usui, Yosuke Matsuo, Takashi Tanaka, Kazusato Ohshima, Shinji Fukuda & Kanji Ishimaru. (2017). Phenolic constituents from Allium macrostemon Bunge. 生藥學雜誌, 71(1), 51-52.
    Bacchetta, R., Barzaghi, F., & Roncarolo, M.-G. (2018). From IPEX syndrome to Foxp3 mutation: a lesson on immune dysregulation. Annals of the New York Academy of Sciences, 1417(1), 5-22.
    Bankole, E., Read, E., Curtis, M. A., Neves, J. F., & Garnett, J. A. (2021). The relationship between mucins and ulcerative colitis: a systematic review. Journal of Clinical Medicine, 10(9), 1935.
    Bennike, T. B., Carlsen, T. G., Ellingsen, T., Bonderup, O. K., Glerup, H., Bøgsted, M., Christiansen, G., Birkelund, S., Stensballe, A., & Andersen, V. (2015). Neutrophil extracellular traps in ulcerative colitis. Inflammatory Bowel Diseases, 21(9), 2052-2067.
    Bergstrom, K. S. B., Guttman, J. A., Rumi, M., Ma, C., Bouzari, S., Khan, M. A., Gibson, D. L., Vogl, A. W., & Vallance, B. A. (2008). Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen. Infection and Immunity, 76(2), 796-811.
    Bjarnason, I. (2017). The use of fecal calprotectin in inflammatory bowel disease. Gastroenterology & hepatology, 13(1), 53-56.
    Boschetti, G., Kanjarawi, R., Bardel, E., Collardeau-Frachon, S., Duclaux-Loras, R., Moro-Sibilot, L., Almeras, T., Flourié, B., Nancey, S., & Kaiserlian, D. (2016). Gut inflammation in mice triggers proliferation and function of mucosal Foxp3+ regulatory T cells but impairs their conversion from CD4+ T cells. Journal of Crohn's and Colitis, 11(1), 105-117.
    Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532-1535.
    Brydon, W. G., Choudari, C. P., & Ferguson, A. (1993). Relative specificity for active inflammatory bowel disease of plasma-derived proteins in gut lavage fluid. European Journal of Gastroenterology & Hepatology, 5(4), 269-274.
    Buda, A., Jepson, M. A., & Pignatelli, M. (2012). Regulatory function of trefoil peptides (TFF) on intestinal cell junctional complexes. Cell Communication & Adhesion 19(5-6), 63-68.
    Cao, H.-X., Zhu, K.-X., Fan, J.-G., & Qiao, L. (2014). Garlic-derived allyl sulfides in cancer therapy. Anti-Cancer Agents in Medicinal Chemistry, 14(6), 793-799.
    Capurso, G., & Lahner, E. (2017). The interaction between smoking, alcohol and the gut microbiome. Best Practice & Research Clinical Gastroenterology, 31(5), 579-588.
    Cedric Auffray, Michael H. Sieweke, & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Review of Immunology, 27(1), 669-692.
    Chandra, H., Sharma, K. K., Tuovinen, O. H., Sun, X., & Shukla, P. (2021). Pathobionts: mechanisms of survival, expansion, and interaction with host with a focus on clostridioides difficile. Gut microbes, 13(1), 1979882-1979882.
    Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay‐Kumar, M. (2014). Dextran sulfate sodium (DSS)‐induced colitis in mice. Current Protocols in Immunology, 104(1), 15.25.1-15.25.14.
    Chaudhry, A., Samstein, R. M., Treuting, P., Liang, Y., Pils, M. C., Heinrich, J. M., Jack, R. S., Wunderlich, F. T., Brüning, J. C., Müller, W., & Rudensky, A. Y. (2011). Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity, 34(4), 566-578.
    Chen, P., Zhou, X., Zhang, L., Shan, M., Bao, B., Cao, Y., Kang, A., & Ding, A. (2015). Anti-inflammatory effects of Huangqin tang extract in mice on ulcerative colitis. Journal Ethnopharmacol, 162, 207-214.
    Chen, X., Fang, D., Li, L., Chen, L., Li, Q., Gong, F., & Fang, M. (2017). Glycyrrhizin ameliorates experimental colitis through attenuating interleukin-17-producing T cell responses via regulating antigen-presenting cells. Immunology Research, 65(3), 666-680.
    Chen, Y. S., Lian, Y. Z., Chen, W. C., Chang, C. C., Tinkov, A. A., Skalny, A. V., & Chao, J. C. (2022). Lycium barbarum polysaccharides and capsaicin inhibit oxidative stress, inflammatory responses, and pain signaling in rats with dextran sulfate sodium-induced colitis. International Journal Molecular Sciences, 23(5), 2423.
    Cheroutre, H., Lambolez, F., & Mucida, D. (2011). The light and dark sides of intestinal intraepithelial lymphocytes. Nature Reviews Immunology, 11(7), 445-456.
    Chicco, F., Magrì, S., Cingolani, A., Paduano, D., Pesenti, M., Zara, F., Tumbarello, F., Urru, E., Melis, A., Casula, L., Fantini, M. C., & Usai, P. (2020). Multidimensional impact of mediterranean diet on IBD patients. Inflammatory Bowel Diseases, 27(1), 1-9.
    Choudari, C. P., O'Mahony, S., Brydon, G., Mwantembe, O., & Ferguson, A. (1993). Gut lavage fluid protein concentrations: objective measures of disease activity in inflammatory bowel disease. Gastroenterology, 104(4), 1064-1071.
    Choy, M. C., Visvanathan, K., & De Cruz, P. (2017). An overview of the innate and adaptive immune system in inflammatory bowel disease. Inflammatory Bowel Diseases, 23(1), 2-13.
    Coleman, S. L., Kruger, M. C., Sawyer, G. M., & Hurst, R. D. (2016). Procyanidin A2 modulates IL-4-induced CCL26 production in human alveolar epithelial cells. International Journal Molecular Sciences, 17(11), 1888.
    Connell, W. R., Kamm, M. A., Dickson, M., Balkwill, A. M., Ritchie, J. K., & Lennard-Jones, J. E. (1994). Long-term neoplasia risk after azathioprine treatment in inflammatory bowel disease. Lancet, 343(8908), 1249-1252.
    Cooper, M. D. (2015). The early history of B cells. Nature Reviews Immunology, 15(3), 191-197.
    Costa, R. F. A., Ferrari, M. L. A., Bringer, M.-A., Darfeuille-Michaud, A., Martins, F. S., & Barnich, N. (2020). Characterization of mucosa-associated Escherichia coli strains isolated from Crohn’s disease patients in Brazil. BMC Microbiology, 20(1), 178.
    Crotty, S. (2015). A brief history of T cell help to B cells. Nature Reviews Immunology, 15(3), 185-189.
    Cui, L., Guan, X., Ding, W., Luo, Y., Wang, W., Bu, W., Song, J., Tan, X., Sun, E., Ning, Q., Liu, G., Jia, X., & Feng, L. (2021). Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. International Journal of Biological Macromolecules, 166, 1035-1045.
    Daniels, M. A., & Teixeiro, E. (2015). TCR signaling in T cell memory. Frontiers in Immunology, 6, 617-617.
    Daperno, M., D'Haens, G., Van Assche, G., Baert, F., Bulois, P., Maunoury, V., Sostegni, R., Rocca, R., Pera, A., Gevers, A., Mary, J. Y., Colombel, J. F., & Rutgeerts, P. (2004). Development and validation of a new, simplified endoscopic activity score for Crohn's disease: the SES-CD. Gastrointest Endosc, 60(4), 505-512.
    de Souza, H. S. P., & Fiocchi, C. (2016). Immunopathogenesis of IBD: current state of the art. Nature Reviews Gastroenterology & Hepatology, 13(1), 13-27.
    Derwa, Y., Gracie, D. J., Hamlin, P. J., & Ford, A. C. (2017). Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 46(4), 389-400.
    Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., Pudlo, N. A., Kitamoto, S., Terrapon, N., Muller, A., Young, V. B., Henrissat, B., Wilmes, P., Stappenbeck, T. S., Núñez, G., & Martens, E. C. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 167(5), 1339-1353.e1321.
    Diez-Echave, P., Ruiz-Malagón, A. J., Molina-Tijeras, J. A., Hidalgo-García, L., Vezza, T., Cenis-Cifuentes, L., Rodríguez-Sojo, M. J., Cenis, J. L., Rodríguez-Cabezas, M. E., Rodríguez-Nogales, A., Gálvez, J., & Lozano-Pérez, A. A. (2021). Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. International Journal of Pharmaceutics, 606, 120935.
    Dige, A., Hvas, C. L., Deleuran, B., Kelsen, J., Bendix-Struve, M., Dahlerup, J. F., & Agnholt, J. (2011). Adalimumab treatment in Crohn's disease does not induce early changes in regulatory T cells. Scandinavian Journal of Gastroenterology, 46(10), 1206-1214.
    Dixon, L. J., Kabi, A., Nickerson, K. P., & McDonald, C. (2015). Combinatorial effects of diet and genetics on inflammatory bowel disease pathogenesis. Inflammatory Bowel Diseases, 21(4), 912-922.
    Dolan, K. T., & Chang, E. B. (2017). Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Molecular Nutrition & Food Research, 61(1), 1600129.
    Dong, Y., Lei, J., & Zhang, B. (2020). Dietary quercetin alleviated DSS-induced colitis in mice through several possible pathways by transcriptome analysis. Current Pharmaceutical Biotechnology, 21(15), 1666-1673.
    Eichele, D. D., & Kharbanda, K. K. (2017). Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World Journal of Gastroenterology, 23(33), 6016-6029.
    El-Sayed, H. S., Chizzola, R., Ramadan, A. A., & Edris, A. E. (2017). Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water based delivery systems. Food Chemistry, 221, 196-204.
    Erben, U., Loddenkemper, C., Doerfel, K., Spieckermann, S., Haller, D., Heimesaat, M. M., Zeitz, M., Siegmund, B., & Kühl, A. A. (2014). A guide to histomorphological evaluation of intestinal inflammation in mouse models. International journal of clinical and experimental pathology, 7(8), 4557-4576.
    Farombi, E. O., Adedara, I. A., Ajayi, B. O., Ayepola, O. R., & Egbeme, E. E. (2013). Kolaviron, a natural antioxidant and anti-inflammatory phytochemical prevents dextran sulphate sodium-induced colitis in rats. Basic & Clinical Pharmacology & Toxicology, 113(1), 49-55.
    Fasching, P., Stradner, M., Graninger, W., Dejaco, C., & Fessler, J. (2017). Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules, 22(1), 134.
    Feuerstein, J. D., & Cheifetz, A. S. (2017). Crohn disease: epidemiology, diagnosis, and management. Mayo Clinic Proceedings, 92(7), 1088-1103.
    Feuerstein, J. D., Moss, A. C., & Farraye, F. A. (2019). Ulcerative colitis. Mayo Clinic Proceedings, 94(7), 1357-1373.
    Fujino, S., Andoh, A., Bamba, S., Ogawa, A., Hata, K., Araki, Y., Bamba, T., & Fujiyama, Y. (2003). Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 52(1), 65.
    Gallo, R. L., & Hooper, L. V. (2012). Epithelial antimicrobial defence of the skin and intestine. Nature Reviews Immunology, 12(7), 503-516.
    Garcia-Hernandez, V., Quiros, M., & Nusrat, A. (2017). Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Annals of the New York Academy of Sciences, 1397(1), 66-79.
    Geremia, A., Biancheri, P., Allan, P., Corazza, G. R., & Di Sabatino, A. (2014). Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Reviews, 13(1), 3-10.
    Gibson, P. R. (2017). Use of the low-FODMAP diet in inflammatory bowel disease. Journal of Gastroenterology and Hepatology, 32, 40-42.
    Ginhoux, F., & Jung, S. (2014). Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature Reviews Immunology, 14(6), 392-404.
    Ginzel, M., Feng, X., Kuebler, J. F., Klemann, C., Yu, Y., von Wasielewski, R., Park, J.-K., Hornef, M. W., Vieten, G., Ure, B. M., Kaussen, T., Gosemann, J. H., Mayer, S., Suttkus, A., & Lacher, M. (2017). Dextran sodium sulfate (DSS) induces necrotizing enterocolitis-like lesions in neonatal mice. PLoS ONE, 12(8), e0182732-e0182732.
    Gálvez, J. (2014a). Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflammation, 2014, 1-14.
    Gálvez, J. (2014b). Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflammation, 2014, 928461-928461.
    Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5), 593-604.
    Grainger, J. R., Konkel, J. E., Zangerle-Murray, T., & Shaw, T. N. (2017). Macrophages in gastrointestinal homeostasis and inflammation. Pflügers Archiv-European Journal of Physiology, 469(3-4), 527-539.
    Greenwood-Van Meerveld, B., Johnson, A. C., & Grundy, D. (2017). Gastrointestinal physiology and function. Handbook of Experimental Pharmacology, 239, 1-16.
    Guan, Q. (2019a). A comprehensive review and update on the pathogenesis of inflammatory bowel disease. Journal of Immunology Research, 2019, 7247238.
    Guan, Q. (2019b). A comprehensive review and update on the pathogenesis of inflammatory bowel disease. Journal of Immunology Research, 2019, 1-16.
    Gutcher, I., & Becher, B. (2007). APC-derived cytokines and T cell polarization in autoimmune inflammation. Journal of Clinical Investigation, 117(5), 1119-1127.
    Halfvarson, J., Brislawn, C. J., Lamendella, R., Vázquez-Baeza, Y., Walters, W. A., Bramer, L. M., D'Amato, M., Bonfiglio, F., McDonald, D., Gonzalez, A., McClure, E. E., Dunklebarger, M. F., Knight, R., & Jansson, J. K. (2017). Dynamics of the human gut microbiome in inflammatory bowel disease. Nature Microbiology, 2(5), 17004.
    Hall, L. J., Faivre, E., Quinlan, A., Shanahan, F., Nally, K., & Melgar, S. (2011). Induction and activation of adaptive immune populations during acute and chronic phases of a murine model of experimental colitis. Digestive Diseases and Sciences, 56(1), 79-89.
    Hanauer, S. B. (2017). Combination therapy for inflammatory bowel disease. Journal of Gastroenterology and Hepatology (N Y), 13(5), 296-298.
    Harrison, O. J., & Powrie, F. M. (2013). Regulatory T cells and immune tolerance in the intestine. Cold Spring Harbor Perspectives in Biology, 5(7), a018341.
    Hayes, C. L., Dong, J., Galipeau, H. J., Jury, J., McCarville, J., Huang, X., Wang, X.-Y., Naidoo, A., Anbazhagan, A. N., Libertucci, J., Sheridan, C., Dudeja, P. K., Bowdish, D. M. E., Surette, M. G., & Verdu, E. F. (2018). Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Scientific Reports, 8(1), 14184-14184.
    He, R., Li, Y., Han, C., Lin, R., Qian, W., & Hou, X. (2019). L-fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-B activation. International Immunopharmacology, 73, 379-388.
    Helander, H. F., & Fändriks, L. (2014). Surface area of the digestive tract - revisited. Scandinavian Journal of Gastroenterology, 49(6), 681-689.
    Hill, A. A., & Diehl, G. E. (2018). Identifying the patterns of pattern recognition receptors. Immunity, 49(3), 389-391.
    Hoebler, C., Gaudier, E., De Coppet, P., Rival, M., & Cherbut, C. (2006). Muc genes are differently expressed during onset and maintenance of inflammation in dextran sodium sulfate-treated mice. Digestive Diseases and Sciences, 51(2), 381-389.
    Horowitz, J. E., Warner, N., Staples, J., Crowley, E., Gosalia, N., Murchie, R., Van Hout, C., Fiedler, K., Welch, G., King, A. K., Reid, J. G., Overton, J. D., Baras, A., Shuldiner, A. R., Griffiths, A., Gottesman, O., Muise, A. M., & Gonzaga-Jauregui, C. (2021). Mutation spectrum of NOD2 reveals recessive inheritance as a main driver of early onset Crohn’s disease. Scientific Reports, 11(1), 5595.
    Hsiung, Y. C., Liu, J. J., Hou, Y. C., Yeh, C. L., & Yeh, S. L. (2014). Effects of dietary glutamine on the homeostasis of CD4+ T cells in mice with dextran sulfate sodium-induced acute colitis. PLoS ONE, 9(1), e84410.
    Hu, Z., Ren, L., Wang, C., Liu, B., & Song, G. (2012). Effect of chenodeoxycholic acid on fibrosis, inflammation and oxidative stress in kidney in high-fructose-fed Wistar rats. Kidney and Blood Pressure Research, 36(1), 85-97.
    Hu, Z., Zou, Q., & Su, B. (2018). Regulation of T cell immunity by cellular metabolism. Frontiers of Medicine, 12(4), 463-472.
    Huang, Y., & Chen, Z. (2016). Inflammatory bowel disease related innate immunity and adaptive immunity. American Journal of Translational Research, 8(6), 2490-2497.
    Huber, S., Gagliani, N., Esplugues, E., O'Connor, W., Jr., Huber, F. J., Chaudhry, A., Kamanaka, M., Kobayashi, Y., Booth, C. J., Rudensky, A. Y., Roncarolo, M. G., Battaglia, M., & Flavell, R. A. (2011). Th17 cells express interleukin-10 receptor and are controlled by Foxp3⁻ and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity, 34(4), 554-565.
    Hugot, J.-P., Laurent-Puig, P., Gower-Rousseau, C., Olson, J. M., Lee, J. C., Beaugerie, L., Naom, I., Dupas, J.-L., Van Gossum, A., Groupe D'Etude Thérapeutique Des, A., Orholm, M., Bonaiti-Pellie, C., Weissenbach, J., Mathew, C. G., Lennard-Jones, J. E., Cortot, A., Colombel, J.-F., & Thomas, G. (1996). Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature, 379(6568), 821-823.
    Illescas, O., Rodríguez-Sosa, M., & Gariboldi, M. (2021). Mediterranean diet to prevent the development of colon diseases: a meta-analysis of gut microbiota studies. Nutrients, 13(7), 2234.
    Jakaria, M., Azam, S., Cho, D. Y., Haque, M. E., Kim, I. S., & Choi, D. K. (2019). The methanol extract of Allium cepa L. Protects inflammatory markers in LPS-induced BV-2 microglial cells and upregulates the antiapoptotic gene and antioxidant enzymes in N27-a cells. Antioxidants (Basel), 8(9), 348.
    Jakubzick, C. V., Randolph, G. J., & Henson, P. M. (2017). Monocyte differentiation and antigen-presenting functions. Nature Reviews Immunology, 17(6), 349-362.
    Jeong, D. Y., Kim, S., Son, M. J., Son, C. Y., Kim, J. Y., Kronbichler, A., Lee, K. H., & Shin, J. I. (2019). Induction and maintenance treatment of inflammatory bowel disease: a comprehensive review. Autoimmunity Reviews, 18(5), 439-454.
    Jia, K., Tong, X., Wang, R., & Song, X. (2018). The clinical effects of probiotics for inflammatory bowel disease: a meta-analysis. Medicine, 97(51), e13792.
    Jiang, W., Su, J., Zhang, X., Cheng, X., Zhou, J., Shi, R., & Zhang, H. (2014). Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease. Inflammation Research, 63(11), 943-950.
    Jäger, S., Stange, E. F., & Wehkamp, J. (2013). Inflammatory bowel disease: an impaired barrier disease. Langenbeck's Archives of Surgery, 398(1), 1-12.
    Johansson, M. E., & Hansson, G. C. (2016). Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology, 16(10), 639-649.
    Kühl, A. A., Erben, U., Kredel, L. I., & Siegmund, B. (2015). Diversity of intestinal macrophages in inflammatory bowel diseases. Frontiers in Immunology, 6, 613-613.
    Kaistha, A., & Levine, J. (2014). Inflammatory bowel disease: the classic gastrointestinal autoimmune disease. Current Problems in Pediatric and Adolescent Health Care, 44(11), 328-334.
    Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q., & Yoshimura, A. (2016). Induced regulatory T cells: their development, stability, and applications. Trends in Immunology, 37(11), 803-811.
    Kang, S. H., Jeon, Y. D., Moon, K. H., Lee, J. H., Kim, D. G., Kim, W., Myung, H., Kim, J. S., Kim, H. J., Bang, K. S., & Jin, J. S. (2017). Aronia berry extract ameliorates the severity of dextran sodium sulfate-induced ulcerative colitis in mice. Journal of Medicinal Food, 20(7), 667-675.
    Karayiannakis, A. J., Syrigos, K. N., Efstathiou, J., Valizadeh, A., Noda, M., Playford, R. J., Kmiot, W., & Pignatelli, M. (1998). Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. Journal of Pathology, 185(4), 413-418.
    Khajah, M. A., El-Hashim, A. Z., Orabi, K. Y., Hawai, S., & Sary, H. G. (2020). Onion bulb extract can both reverse and prevent colitis in mice via inhibition of pro-inflammatory signaling molecules and neutrophil activity. PLoS ONE, 15(10), e0233938.
    Kiesler, P., Fuss, I. J., & Strober, W. (2015). Experimental models of inflammatory bowel diseases. Cellular and Molecular Gastroenterology and Hepatology, 1(2), 154-170.
    Kim, J., Choi, J. H., Ko, G., Jo, H., Oh, T., Ahn, B., & Unno, T. (2020). Anti-inflammatory properties and gut microbiota modulation of porphyra tenera extracts in dextran sodium sulfate-induced colitis in mice. Antioxidants (Basel, Switzerland), 9(10), 988.
    Kim, Y. S., & Ho, S. B. (2010). Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep, 12(5), 319-330.
    Kitajima, S., Takuma, S., & Morimoto, M. (2000). Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Journal of Experimental Animal Science, 49(1), 9-15.
    Ko, C. W., Singh, S., Feuerstein, J. D., Falck-Ytter, C., Falck-Ytter, Y., Cross, R. K., Crockett, S., Falck-Ytter, Y., Feuerstein, J., Flamm, S., Inadomi, J., Ko, C., Muniraj, T., O’Shea, R., Pandolfino, J., Patel, A., Sharaf, R., Siddique, S., Su, G., Wang, K., & Weizman, A. (2019). AGA clinical practice guidelines on the management of mild-to-moderate ulcerative colitis. Gastroenterology, 156(3), 748-764.
    Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13(3), 159-175.
    Kolls, J. K., & Lindén, A. (2004). Interleukin-17 family members and inflammation. Immunity, 21(4), 467-476.
    Kondo, S., Araki, T., Toiyama, Y., Tanaka, K., Kawamura, M., Okugawa, Y., Okita, Y., Saigusa, S., Inoue, Y., Uchida, K., Mohri, Y., & Kusunoki, M. (2018). Downregulation of trefoil factor-3 expression in the rectum is associated with the development of ulcerative colitis-associated cancer. Oncology letters, 16(3), 3658-3664.
    Korzenik, J. R., & Dieckgraefe, B. K. (2000). Digestive Diseases and Sciences, 45(6), 1121-1129.
    Korzenik, J. R., & Podolsky, D. K. (2006). Evolving knowledge and therapy of inflammatory bowel disease. Nature Reviews Drug Discovery, 5(3), 197-209.
    Kurosaki, T., Kometani, K., & Ise, W. (2015). Memory B cells. Nature Reviews Immunology, 15(3), 149-159.
    Kwak, K., Akkaya, M., & Pierce, S. K. (2019). B cell signaling in context. Nature Immunology, 20(8), 963-969.
    Lee, G. R. (2018). The balance of Th17 versus Treg cells in autoimmunity. International Journal of Molecular Sciences, 19(3), 730.
    Lee, S. H. (2015). Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intestinal Research, 13(1), 11.
    Li, G., Lin, J., Zhang, C., Gao, H., Lu, H., Gao, X., Zhu, R., Li, Z., Li, M., & Liu, Z. (2021). Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut microbes, 13(1), 1968257.
    Li, T., Wang, C., Liu, Y., Li, B., Zhang, W., Wang, L., Yu, M., Zhao, X., Du, J., Zhang, J., Dong, Z., Jiang, T., Xie, R., Ma, R., Fang, S., Zhou, J., & Shi, J. (2020). Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. Journal of Crohn's and Colitis, 14(2), 240-253.
    Li, X., Tan, J., Zhang, F., Xue, Q., Wang, N., Cong, X., & Wang, J. (2019). H.pylori infection alleviates acute and chronic colitis with the expansion of regulatory B cells in mice. Inflammation, 42(5), 1611-1621.
    Liang, S. C., Tan, X. Y., Luxenberg, D. P., Karim, R., Dunussi-Joannopoulos, K., Collins, M., & Fouser, L. A. (2006). Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. Journal of Experimental Medicine, 203(10), 2271-2279.
    Ling, S., Jin, L., Li, S., Zhang, F., Xu, Q., Liu, M., Chen, X., Liu, X., Gu, J., Liu, S., Liu, N., & Ou, W. (2020). Allium macrostemon saponin inhibits activation of platelet via the CD40 signaling pathway. Frontiers in Pharmacology, 11, 570603.
    Littman, D. R., & Rudensky, A. Y. (2010). Th17 and regulatory T cells in mediating and restraining inflammation. Cell, 140(6), 845-858.
    Liu, H., Hong, X. L., Sun, T. T., Huang, X. W., Wang, J. L., & Xiong, H. (2020). Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. Journal of Digestive Diseases, 21(7), 385-398.
    Liu, W., Zhang, Y., Qiu, B., Fan, S., Ding, H., & Liu, Z. (2018). Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran sulfate sodium in C57BL/6 mice. Scientific Reports, 8(1), 14916.
    Liu, X., He, H., Huang, T., Lei, Z., Liu, F., An, G., & Wen, T. (2016). Tanshinone IIA protects against dextran sulfate sodium- (DSS-) induced colitis in mice by modulation of neutrophil infiltration and activation. Oxidative medicine and cellular longevity, 2016, 7916763-7916763.
    Liu, X. C., Liu, Q., Zhou, L., & Liu, Z. L. (2014). Evaluation of larvicidal activity of the essential oil of Allium macrostemon Bunge and its selected major constituent compounds against Aedes albopictus (Diptera: Culicidae). Parasites & Vectors, 7, 184.
    Loncar, M. B., Al-azzeh, E. D., Sommer, P. S., Marinovic, M., Schmehl, K., Kruschewski, M., Blin, N., Stohwasser, R., Gött, P., & Kayademir, T. (2003). Tumour necrosis factor alpha and nuclear factor kappaB inhibit transcription of human TFF3 encoding a gastrointestinal healing peptide. Gut, 52(9), 1297-1303.
    Long, X., Kim, Y. G., Pyo, Y. K., Yi, R., Zhao, X., & Park, K. Y. (2020). Inhibitory effect of Jangkanghwan (Korean traditional food) on experimental ulcerative colitis in mice. Journal of Food Biochemistry, 44(12), e13488.
    Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P., & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275-1283.
    Macpherson, A., Khoo, U. Y., Forgacs, I., Philpott-Howard, J., & Bjarnason, I. (1996). Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut, 38(3), 365-375.
    Magro, F., Cordeiro, G., Dias, A. M., & Estevinho, M. M. (2020). Inflammatory bowel disease – non-biological treatment. Pharmacological Research, 160, 105075.
    Mahmud, S. A., Manlove, L. S., & Farrar, M. A. (2013). Interleukin-2 and STAT5 in regulatory T cell development and function. Jakstat, 2(1), e23154.
    Mak, W. Y., Zhao, M., Ng, S. C., & Burisch, J. (2020). The epidemiology of inflammatory bowel disease: East meets west. Journal of Gastroenterology and Hepatology, 35(3), 380-389.
    Mantis, N. J., Rol, N., & Corthésy, B. (2011). Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunology, 4(6), 603-611.
    Marefati, N., Eftekhar, N., Kaveh, M., Boskabadi, J., Beheshti, F., & Boskabady, M. H. (2018). The effect of <b><i>Allium cepa</i></b> extract on lung oxidant, antioxidant, and immunological biomarkers in ovalbumin-sensitized rats. Medical Principles and Practice, 27(2), 122-128.
    Matsuno, H., Kayama, H., Nishimura, J., Sekido, Y., Osawa, H., Barman, S., Ogino, T., Takahashi, H., Haraguchi, N., Hata, T., Matsuda, C., Yamamoto, H., Uchino, M., Ikeuchi, H., Doki, Y., Mori, M., Takeda, K., & Mizushima, T. (2017). CD103+ dendritic cell function is altered in the colons of patients with ulcerative colitis. Inflammatory Bowel Diseases, 23(9), 1524-1534.
    Maul, J., Loddenkemper, C., Mundt, P., Berg, E., Giese, T., Stallmach, A., Zeitz, M., & Duchmann, R. (2005). Peripheral and intestinal regulatory CD4+CD25 high T cells in inflammatory bowel disease. Gastroenterology, 128(7), 1868-1878.
    Mayne, C. G., & Williams, C. B. (2013). Induced and natural regulatory T cells in the development of inflammatory bowel disease. Inflammatory Bowel Diseases, 19(8), 1772-1788.
    McGuckin, M. A., Lindén, S. K., Sutton, P., & Florin, T. H. (2011). Mucin dynamics and enteric pathogens. Nature Reviews Microbiology, 9(4), 265-278.
    McKinley, M. P., & O'Loughlin, V. D. (2012). Human anatomy, 3rd edition. Boston:
    McGraw-Hill Higher Education.
    Melgar, S., Karlsson, A., & Michaëlsson, E. (2005). Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 288(6), G1328-G1338.
    Meng, X. B., Zhu, T., Yang, D. H., Liang, W., Sun, G. B., & Sun, X. B. (2019). Xuezhitong capsule, an extract of Allium macrostemon Bunge, exhibits reverse cholesterol transport and accompanies high-density lipoprotein levels to protect against hyperlipidemia in ApoE(-/-) mice. Annals of Translational Medicine, 7(11), 239.
    Meyer zum Büschenfelde, D., Tauber, R., & Huber, O. (2006). TFF3-peptide increases transepithelial resistance in epithelial cells by modulating claudin-1 and -2 expression. Peptides, 27(12), 3383-3390.
    Mijan, M. A., & Lim, B. O. (2018). Diets, functional foods, and nutraceuticals as alternative therapies for inflammatory bowel disease: present status and future trends. World journal of gastroenterology, 24(25), 2673-2685.
    Mirsepasi-Lauridsen, H. C., Vallance, B. A., Krogfelt, K. A., & Petersen, A. M. (2019). Escherichia coli pathobionts associated with inflammatory bowel disease. Clinical Microbiology Reviews, 32(2), e00060-18.
    Mizoguchi, A. (2012). Animal models of inflammatory bowel disease. In P. M. Conn (Ed.), Progress in Molecular Biology and Translational Science (Vol. 105, pp. 263-320). Academic Press.
    Morgan, X. C., Tickle, T. L., Sokol, H., Gevers, D., Devaney, K. L., Ward, D. V., Reyes, J. A., Shah, S. A., Leleiko, N., Snapper, S. B., Bousvaros, A., Korzenik, J., Sands, B. E., Xavier, R. J., & Huttenhower, C. (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology, 13(9), R79.
    Murai, M., Turovskaya, O., Kim, G., Madan, R., Karp, C. L., Cheroutre, H., & Kronenberg, M. (2009). Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature Immunology, 10(11), 1178-1184.
    Murthy, S. N. S., Cooper, H. S., Shim, H., Shah, R. S., Ibrahim, S. A., & Sedergran, D. J. (1993). Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Digestive Diseases and Sciences, 38(9), 1722-1734.
    Nagler-Anderson, C. (2001). Man the barrier! Strategic defences in the intestinal mucosa. Nature Reviews Immunology, 1(1), 59-67.
    Nakamura, H., Tomuschat, C., Coyle, D., O’Donnel, A.-M., Lim, T., & Puri, P. (2018). Altered goblet cell function in Hirschsprung’s disease. Pediatric Surgery International, 34(2), 121-128.
    Nakanishi, Y., Sato, T., & Ohteki, T. (2015). Commensal Gram-positive bacteria initiates colitis by inducing monocyte/macrophage mobilization. Mucosal Immunology, 8(1), 152-160.
    Nemeth, Z. H., Bogdanovski, D. A., Barratt-Stopper, P., Paglinco, S. R., Antonioli, L., & Rolandelli, R. H. (2017). Crohn's disease and ulcerative colitis show unique cytokine profiles. Cureus Journal of Medical Science, 9(4), e1177.
    Neurath, M. F. (2017). Current and emerging therapeutic targets for IBD. Nature Reviews Gastroenterology & Hepatology, 14(5), 269-278.
    Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., & Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinical Journal of Gastroenterology, 11(1), 1-10.
    Noack, M., & Miossec, P. (2014). Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity Reviews, 13(6), 668-677.
    Noble, A., Durant, L., Hoyles, L., Mccartney, A. L., Man, R., Segal, J., Costello, S. P., Hendy, P., Reddi, D., Bouri, S., Lim, D. N. F., Pring, T., O’Connor, M. J., Datt, P., Wilson, A., Arebi, N., Akbar, A., Hart, A. L., Carding, S. R., & Knight, S. C. (2019). Deficient resident memory T cell and CD8 T cell response to commensals in inflammatory bowel disease. Journal of Crohn's and Colitis, 14(4), 525-537.
    Nunes, N. S., Kim, S., Sundby, M., Chandran, P., Burks, S. R., Paz, A. H., & Frank, J. A. (2018). Temporal clinical, proteomic, histological and cellular immune responses of dextran sulfate sodium-induced acute colitis. World journal of gastroenterology, 24(38), 4341-4355.
    Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M., & Corcoran, L. M. (2015). The generation of antibody-secreting plasma cells. Nature Reviews Immunology, 15(3), 160-171.
    O'Mahony, S., Choudari, C. P., Barton, J. R., Walker, S., & Ferguson, A. (1991). Gut lavage fluid proteins as markers of activity of inflammatory bowel disease. Scandinavian Journal of Gastroenterology, 26(9), 940-944.
    Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., & Nakaya, R. (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 98(3), 694-702.
    Okumura, R., & Takeda, K. (2018). Maintenance of intestinal homeostasis by mucosal barriers. Inflammation and Regeneration, 38(1), 5.
    Omenetti, S., & Pizarro, T. T. (2015). The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome [mini review]. Frontiers in Immunology, 6(639).
    Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases [review]. Frontiers in Immunology, 10(277).
    Pedros, C., Duguet, F., Saoudi, A., & Chabod, M. (2016). Disrupted regulatory T cell homeostasis in inflammatory bowel diseases. World journal of gastroenterology, 22(3), 974-995.
    Pereira, L. M. S., Gomes, S. T. M., Ishak, R., & Vallinoto, A. C. R. (2017). Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis [review]. Frontiers in Immunology, 8(605).
    Perše, M., & Cerar, A. (2012). Dextran sodium sulphate colitis mouse model: traps and tricks. Journal of Biomedicine and Biotechnology, 2012, 1-13.
    Piechowiak, T., Grzelak-Błaszczyk, K., Bonikowski, R., & Balawejder, M. (2020). Optimization of extraction process of antioxidant compounds from yellow onion skin and their use in functional bread production. LWT-Food Science and Technology, 117, 108614.
    Plato, A., Hardison, S. E., & Brown, G. D. (2015). Pattern recognition receptors in antifungal immunity. Seminars in Immunopathology, 37(2), 97-106.
    Prince, A. C., Myers, C. E., Joyce, T., Irving, P., Lomer, M., & Whelan, K. (2016). Fermentable carbohydrate restriction (low FODMAP diet) in clinical practice improves functional gastrointestinal symptoms in patients with inflammatory bowel disease. Inflammatory Bowel Diseases, 22(5), 1129-1136.
    Putnik, P., Gabrić, D., Roohinejad, S., Barba, F. J., Granato, D., Mallikarjunan, K., Lorenzo, J. M., & Bursać Kovačević, D. (2019). An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chemistry, 276, 680-691.
    Qu, L., Lin, X., Liu, C., Ke, C., Zhou, Z., Xu, K., Cao, G., & Liu, Y. (2021). Atractylodin attenuates dextran sulfate sodium-induced colitis by alleviating gut microbiota dysbiosis and inhibiting inflammatory response through the MAPK pathway. Front Pharmacol, 12, 665376.
    Riemschneider, S., Hoffmann, M., Slanina, U., Weber, K., Hauschildt, S., & Lehmann, J. (2021). Indol-3-carbinol and quercetin ameliorate chronic DSS-induced colitis in C57BL/6 mice by AhR-mediated anti-inflammatory mechanisms. International Journal of Environmental Research and Public Health, 18(5), 2262.
    Romagnani, S. (1999). Th1/Th2 cells. Inflammatory Bowel Diseases, 5(4), 285-294.
    Rubtsov, Y. P., Rasmussen, J. P., Chi, E. Y., Fontenot, J., Castelli, L., Ye, X., Treuting, P., Siewe, L., Roers, A., Henderson, W. R., Jr., Muller, W., & Rudensky, A. Y. (2008). Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity, 28(4), 546-558.
    Rui, X., Li, J., Yang, Y., Xu, L., Liu, Y., Zhang, M., & Yin, D. (2021). Painong san, a traditional chinese compound herbal medicine, restores colon barrier function on DSS-induced colitis in mice. Evidence-Based Complementary and Alternative Medicine, 2021, 2810915.
    Salim, S. Y., & Söderholm, J. D. (2011). Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflammatory Bowel Diseases, 17(1), 362-381.
    Saravia, J., Chapman, N. M., & Chi, H. (2019). Helper T cell differentiation. Cellular & Molecular Immunology, 16(7), 634-643.
    Schenk, M., Bouchon, A., Seibold, F., & Mueller, C. (2007). TREM-1--expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. Journal of Clinical Investigation, 117(10), 3097-3106.
    Schäfer, G., & Kaschula, C. H. (2014). The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anti-Cancer Agents in Medicinal Chemistry, 14(2), 233-240.
    Seo, K., Seo, J., Yeun, J., Choi, H., Kim, Y.-I., & Chang, S.-Y. (2021). The role of mucosal barriers in human gut health. Archives of Pharmacal Research, 44(4), 325-341.
    Shale, M., Schiering, C., & Powrie, F. (2013). CD4(+) T-cell subsets in intestinal inflammation. Immunological Reviews, 252(1), 164-182.
    Shao, X., Sun, C., Tang, X., Zhang, X., Han, D., Liang, S., Qu, R., Hui, X., Shan, Y., Hu, L., Fang, H., Zhang, H., Wu, X., & Chen, C. (2020). Anti-inflammatory and intestinal microbiota modulation properties of jinxiang garlic (Allium sativum L.) polysaccharides toward dextran sodium sulfate-induced colitis. Journal of Agricultural and Food Chemistry, 68(44), 12295-12309.
    Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.-A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233(9), 6425-6440.
    Sharma, P., Sharma, S. R., Dhall, R. K., & Mittal, T. C. (2020). Effect of -radiation on post-harvest storage life and quality of onion bulb under ambient condition. Journal of Food Science and Technology, 57(7), 2534-2544.
    Shea-Donohue, T., Thomas, K., Cody, M. J., Aiping, Z., Detolla, L. J., Kopydlowski, K. M., Fukata, M., Lira, S. A., & Vogel, S. N. (2008). Mice deficient in the CXCR2 ligand, CXCL1 (KC/GRO-alpha), exhibit increased susceptibility to dextran sodium sulfate (DSS)-induced colitis. Journal of Innate Immunity, 14(2), 117-124.
    Shen, F., Ruddy, M. J., Plamondon, P., & Gaffen, S. L. (2005). Cytokines link osteoblasts and inflammation: microarray analysis of interleukin‐17‐and TNF‐‐induced genes in bone cells. Journal of leukocyte biology, 77(3), 388-399.
    Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 11(11), 762-774.
    Skupsky, J., Sabui, S., Hwang, M., Nakasaki, M., Cahalan, M. D., & Said, H. M. (2020). Biotin supplementation ameliorates murine colitis by preventing NF-B activation. Cellular and Molecular Gastroenterology and Hepatology, 9(4), 557-567.
    Stiehm, E. R. (2012). Joseph A. Bellanti (ed) immunology IV: clinical applications in health and disease. Journal of Clinical Immunology, 32(3), 647-647.
    Strober, W., & Fuss, I. J. (2011). Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology, 140(6), 1756-1767.
    Strober, W., Kitani, A., Fuss, I., Asano, N., & Watanabe, T. (2008). The molecular basis of NOD2 susceptibility mutations in Crohn's disease. Mucosal Immunology, 1(S1), S5-S9.
    Sugihara, K., & Kamada, N. (2021). Diet-microbiota interactions in inflammatory bowel disease. Nutrients, 13(5), 1533.
    Suleria, H. A. R., Butt, M. S., Anjum, F. M., Saeed, F., & Khalid, N. (2015). Onion: nature protection against physiological threats. Critical Reviews in Food Science and Nutrition, 55(1), 50-66.
    Sznurkowska, K., Luty, J., Bryl, E., Witkowski, J. M., Hermann-Okoniewska, B., Landowski, P., Kosek, M., & Szlagatys-Sidorkiewicz, A. (2020). Enhancement of circulating and intestinal T regulatory cells and their expression of helios and neuropilin-1 in children with inflammatory bowel disease. Journal of Inflammation Research, 13, 995-1005.
    Tan, Y., & Zheng, C. (2018). Effects of alpinetin on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium-induced ulcerative colitis mice. The American Journal of The Medical Sciences, 355(4), 377-386.
    Tanaka, H., Takechi, M., Kiyonari, H., Shioi, G., Tamura, A., & Tsukita, S. (2015). Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut, 64(10), 1529-1538.
    Tanaka, T. (2012). Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention. International journal of inflammation, 2012, 658786.
    Taupin, D., & Podolsky, D. K. (2003). Trefoil factors: initiators of mucosal healing. Nature Reviews Molecular Cell Biology, 4(9), 721-732.
    Thoo, L., Noti, M., & Krebs, P. (2019). Keep calm: the intestinal barrier at the interface of peace and war. Cell Death & Disease, 10(11), 849.
    Tindemans, I., Joosse, M. E., & Samsom, J. N. (2020). Dissecting the heterogeneity in T-cell mediated inflammation in IBD. Cells, 9(1), 110.
    Torres, J., Mehandru, S., Colombel, J. F., & Peyrin-Biroulet, L. (2017). Crohn's disease. Lancet, 389(10080), 1741-1755.
    Travis, S. P., Schnell, D., Krzeski, P., Abreu, M. T., Altman, D. G., Colombel, J. F., Feagan, B. G., Hanauer, S. B., Lichtenstein, G. R., Marteau, P. R., Reinisch, W., Sands, B. E., Yacyshyn, B. R., Schnell, P., Bernhardt, C. A., Mary, J. Y., & Sandborn, W. J. (2013). Reliability and initial validation of the ulcerative colitis endoscopic index of severity. Gastroenterology, 145(5), 987-995.
    Trio, P. Z., You, S., He, X., He, J., Sakao, K., & Hou, D. X. (2014). Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds. Food and Function, 5(5), 833-844.
    Tsai, H. C., Velichko, S., Hung, L. Y., & Wu, R. (2013). IL-17A and Th17 cells in lung inflammation: an update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clinical & Developmental Immunology, 2013, 267971.
    Ueno, A., Jeffery, L., Kobayashi, T., Hibi, T., Ghosh, S., & Jijon, H. (2018). Th17 plasticity and its relevance to inflammatory bowel disease. J Autoimmun, 87, 38-49.
    Van Limbergen, J., Radford-Smith, G., & Satsangi, J. (2014). Advances in IBD genetics. Nature Reviews Gastroenterology & Hepatology, 11(6), 372-385.
    Vavricka, S. R., Schoepfer, A., Scharl, M., Lakatos, P. L., Navarini, A., & Rogler, G. (2015). Extraintestinal manifestations of inflammatory bowel disease. Inflammatory Bowel Diseases, 21(8), 1982-1992.
    Veauthier, B., & Hornecker, J. R. (2018). Crohn's disease: diagnosis and management. American Family Physician, 98(11), 661-669.
    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24(2), 179-189.
    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGF in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24(2), 179-189.
    Velikova, T. V., Miteva, L., Stanilov, N., Spassova, Z., & Stanilova, S. A. (2020). Interleukin-6 compared to the other Th17/Treg related cytokines in inflammatory bowel disease and colorectal cancer. World journal of gastroenterology, 26(16), 1912-1925.
    Viennois, E., Chen, F., Laroui, H., Baker, M. T., & Merlin, D. (2013). Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Research Notes, 6(1), 360.
    Wadwa, M., Klopfleisch, R., Adamczyk, A., Frede, A., Pastille, E., Mahnke, K., Hansen, W., Geffers, R., Lang, K. S., Buer, J., Büning, J., & Westendorf, A. M. (2016). IL-10 downregulates CXCR3 expression on Th1 cells and interferes with their migration to intestinal inflammatory sites. Mucosal Immunol, 9(5), 1263-1277.
    Wang, Q. Q., Gao, H., Yuan, R., Han, S., Li, X. X., Tang, M., Dong, B., Li, J. X., Zhao, L. C., Feng, J., & Yang, S. (2020). Procyanidin A2, a polyphenolic compound, exerts anti-inflammatory and anti-oxidative activity in lipopolysaccharide-stimulated RAW264.7 cells. PLoS ONE, 15(8), e0237017.
    Wang, Y., Tang, Q., Jiang, S., Li, M., & Wang, X. (2013). Anti-colorectal cancer activity of macrostemonoside A mediated by reactive oxygen species. Biochemical and Biophysical Research Communications, 441(4), 825-830.
    Weber, A. T., Shah, N. D., Sauk, J., & Limketkai, B. N. (2019). Popular diet trends for inflammatory bowel diseases: claims and evidence. Current Treatment Options in Gastroenterology, 17(4), 564-576.
    Wehkamp, J., Harder, J., Weichenthal, M., Mueller, O., Herrlinger, K. R., Fellermann, K., Schroeder, J. M., & Stange, E. F. (2003). Inducible and constitutive -defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflammatory Bowel Diseases, 9(4), 215-223.
    Wirtz, S., Popp, V., Kindermann, M., Gerlach, K., Weigmann, B., Fichtner-Feigl, S., & Neurath, M. F. (2017). Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols, 12(7), 1295-1309.
    Wolf, A. A., Yáñez, A., Barman, P. K., & Goodridge, H. S. (2019). The ontogeny of monocyte subsets [mini review]. Frontiers in Immunology, 10(1642).
    Wu, B., Zhou, Q., He, Z., Wang, X., Sun, X., & Chen, Y. (2021). Protective effect of the abelmoschus manihot flower extract on DSS-induced ulcerative colitis in mice. Evidence-Based Complementary and Alternative Medicine, 2021, 7422792.
    Wu, Y., Tang, L., Wang, B., Sun, Q., Zhao, P., & Li, W. (2019). The role of autophagy in maintaining intestinal mucosal barrier. Journal of Cellular Physiology, 234(11), 19406-19419.
    Wu, Z. Q., Li, K., Ma, J. K., Huang, Q., Tian, X., & Li, Z. J. (2020). Antioxidant activity of organic sulfides from fresh Allium macrostemon Bunge and their protective effects against oxidative stress in Caenorhabditis elegans. Journal of Food Biochemistry, 44(11), e13447.
    Xie, W., Zhang, Y., Wang, N., Zhou, H., Du, L., Ma, X., Shi, X., & Cai, G. (2008). Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. European Journal of Pharmacology, 599(1-3), 159-165.
    Yamamoto, S., & Ma, X. (2009). Role of Nod2 in the development of Crohn's disease. Microbes and Infection, 11(12), 912-918.
    Yan, J.-B., Luo, M.-M., Chen, Z.-Y., & He, B.-H. (2020). The function and role of the Th17/Treg cell balance in inflammatory bowel disease. Journal of Immunology Research, 2020, 1-8.
    Yan, Y., Kolachala, V., Dalmasso, G., Nguyen, H., Laroui, H., Sitaraman, S. V., & Merlin, D. (2009). Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS ONE, 4(6), e6073.
    Yang, X., Dai, Y., Ji, Z., Zhang, X., Fu, W., Han, C., & Xu, Y. (2021). Allium macrostemon Bunge. exerts analgesic activity by inhibiting NaV1.7 channel. Journal of Ethnopharmacology, 281, 114495.
    Yang, Z.-J., Wang, B.-Y., Wang, T.-T., Wang, F.-F., Guo, Y.-X., Hua, R.-X., Shang, H.-W., Lu, X., & Xu, J.-D. (2021). Functions of dendritic cells and its association with intestinal diseases. Cells, 10(3), 583.
    Yao, Z. H., Qin, Z. F., Dai, Y., & Yao, X. S. (2016). Phytochemistry and pharmacology of Allii Macrostemonis Bulbus, a traditional Chinese medicine. Chinese Journal of Natural Medicines, 14(7), 481-498.
    Ye, P., Rodriguez, F. H., Kanaly, S., Stocking, K. L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., Zhang, J., Shellito, J. E., Bagby, G. J., Nelson, S., Charrier, K., Peschon, J. J., & Kolls, J. K. (2001). Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. Journal of Experimental Medicine, 194(4), 519-527.
    Yen, H.-H., Weng, M.-T., Tung, C.-C., Wang, Y.-T., Chang, Y. T., Chang, C.-H., Shieh, M.-J., Wong, J.-M., & Wei, S.-C. (2019). Epidemiological trend in inflammatory bowel disease in Taiwan from 2001 to 2015: a nationwide populationbased study. Intestinal Research, 17(1), 54-62.
    Yona, S., Kim, K.-W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D., Viukov, S., Guilliams, M., Misharin, A., David, Perlman, H., Malissen, B., Zelzer, E., & Jung, S. (2013). Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity, 38(1), 79-91.
    You, Y., Zhou, C., Li, D., Cao, Z. L., Shen, W., Li, W. Z., Zhang, S., Hu, B., & Shen, X. (2016). Sorting nexin 10 acting as a novel regulator of macrophage polarization mediates inflammatory response in experimental mouse colitis. Scientific Reports, 6, 20630.
    Zhang, H. L., Zheng, Y. J., Pan, Y. D., Xie, C., Sun, H., Zhang, Y. H., Yuan, M. Y., Song, B. L., & Chen, J. F. (2016). Regulatory T-cell depletion in the gut caused by integrin 7 deficiency exacerbates DSS colitis by evoking aberrant innate immunity. Mucosal Immunology, 9(2), 391-400.
    Zhang, Y., Peng, L., Li, W., Dai, T., Nie, L., Xie, J., Ai, Y., Li, L., Tian, Y., & Sheng, J. (2020). Polyphenol extract of moringa oleifera leaves alleviates colonic inflammation in dextran sulfate sodium-treated mice. Evidence-based complementary and alternative medicine : eCAM, 2020, 6295402-6295402.
    Zhou, G., Yu, L., Fang, L., Yang, W., Yu, T., Miao, Y., Chen, M., Wu, K., Chen, F., Cong, Y., & Liu, Z. (2018). CD177(+) neutrophils as functionally activated neutrophils negatively regulate IBD. Gut, 67(6), 1052-1063.
    Zhou, G. X., & Liu, Z. J. (2017). Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. Journal of Digestive Diseases, 18(9), 495-503.
    Zhu, J., & Paul, W. E. (2010). Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunological Reviews, 238(1), 247-262.
    Zhu, L., Gu, P., & Shen, H. (2019). Gallic acid improved inflammation via NF-B pathway in TNBS-induced ulcerative colitis. International Immunopharmacology, 67, 129-137.
    Zhu, W., Yu, J., Nie, Y., Shi, X., Liu, Y., Li, F., & Zhang, X. L. (2014). Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunological Investigations, 43(7), 638-652.
    Zuo, T., & Ng, S. C. (2018). The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Frontiers in microbiology, 9, 2247.

    下載圖示
    QR CODE