簡易檢索 / 詳目顯示

研究生: 藍格維
論文名稱: A note on gradient estimate for the equation associated to the p-Laplace operator
A note on gradient estimate for the equation associated to the p-Laplace operator
指導教授: 陳瑞堂
Chen, Jui-Tang
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 30
中文關鍵詞: p-Laplace operatorgradient estimate
英文關鍵詞: p-Laplace operator, gradient estimate
論文種類: 學術論文
相關次數: 點閱:133下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this paper, we study p-Laplace operators on complete noncompact manifolds. Ac-
    cording to Kotschwar-Ni gradient estimat for positive p-harmonic functions, we extend
    their result to more general equation associated to the p-Laplace operator whenever
    the sectional curvature of M has lower bound.

    In this paper, we study p-Laplace operators on complete noncompact manifolds. Ac-
    cording to Kotschwar-Ni gradient estimat for positive p-harmonic functions, we extend
    their result to more general equation associated to the p-Laplace operator whenever
    the sectional curvature of M has lower bound.

    1 Introduction......2 2 Comparison Theorem......4 3 Gradient estimate for p-Laplace’s equations......10

    [1] S-C Chang, J-T Chen, S. W. Wei, Liouville properties for p-harmonic maps with …nite
    q-energy, arXiv:1211.2899 accepted by Transactions of the AMS
    [2] B. Chow and P. Lu and L. Ni, Hamilton’s Ricci Flow, Laplacian, volume and Hessian
    comparison theorems, p. 67-77.
    [3] J.T. Chen and Y. Li and S.W. Wei, Generalized Hardy Type Inequalities, Liouville
    Theorems and Picard Theorems in p-Harmonic Geometry, Proceedings of the Conference
    RIGA 2011 Riemannian Geometry and Applications Bucharest, Romania, p. 95-108.
    [4] E. DiBenedetto, C1; local regularity of weak solutions of degenerate elliptic equations,
    Nonlinear Anal. 7 (1983), no. 8, p. 827–850. MR0709038 (85d:35037)
    [5] L. C. Evans, A new proof of local C1; regularity for solutions of certain degenerate elliptic
    p.d.e., J. Di¤erential Equations 45 (1982), no. 3, p. 356–373. MR0672713 (84a:35082)
    [6] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole. Lecture
    Notes in Mathematics, 699. Springer, Berlin, 1979. ii+215 pp.
    [7] I. Holopainen, Volume growth, Green’s functions, and parabolicity of ends, Duke Math.
    J. 97 (1999), no. 2, p. 319–346. (Reviewer: Thierry Coulhon) MR1682233 (2000i:58066)
    [8] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Ellip-
    tic Equations, OxfordMath.Monographs, Clarendon Press, New York, 1993.MR1207810
    (94e:31003)
    [9] I. Holopainen, S. Pigola, G. Veronelli, Global comparison principles for the p-Laplace op-
    erator on Riemannian manifolds, Potential Anal. 34 (2011), no. 4, 371–384. MR2786704
    (2012e:35256)
    [10] R. Hardt, F.-H. Lin, Mappings minimizing the Lp norm of the gradient, Comm. Pure
    Appl. Math. 40 (1987), no. 5, p. 555–588. MR0896767 (88k:58026)
    [11] B. Kotschwar and L. Ni, Local gradient estimate of p-harmonic functions, 1/H ‡ow and
    an entropy formula, Ann. Sci. Ec. Norm. Sup. 42 (2009), no. 1, p. 1–36. MR2518892
    (2010g:53121)
    [L] P. Li, Geometric analysis. Cambridge Studies in Advanced Mathematics, 134. Cam-
    bridge University Press, Cambridge, 2012. x+406 pp. ISBN: 978-1-107-02064-1 (Re-
    viewer: Frédéric Robert) 58-02 (35P15 53C21 58J32 58J35)
    [12] J. L. Lewis, Capacitary functions in convex rings. Arch. RationalMech. Anal., 66 (1977),
    p. 201–224. MR0477094 (57 #16638)
    [13] P. Lindqvist, Notes on the p-Laplace equation, Report. University of Jyväskylä Depart-
    ment of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006. ii+80
    pp. ISBN: 951-39-2586-2. MR2242021 (2007h:35102)
    [14] P. Li, L.T. Tam, Positive harmonic functions on complete manifolds with nonnegative
    curvature outside a compact set, Ann. of Math. 125 (1987), p. 171–207. MR0873381
    (88m:58039)
    [15] P. Li, L.T. Tam, Harmonic functions and the structure of complete manifolds, J. Dif-
    ferential Geom. 35 (1992), p. 359–383 MR1158340 (93b:53033)
    [16] P. Li, J. Wang, Complete manifolds with positive spectrum, J. Di¤erential Geometry
    58 (2001), no. 3, p. 501–534. MR1906784 (2003e:58046)
    [17] P. Li and J.Wang, Complete manifolds with positive spectrum, II, J. Di¤erential Geom.
    62 (2002), p. 143–162. MR1987380 (2004d:58045)
    [18] S. Pigola, M. Rigoli, A.G. Setti, Vanishing and …niteness results in geometric analysis.
    A generalization of the Bochner technique, Progress in Mathematics, 266. Birkhäuser
    Verlag, Basel, 2008. xiv+282 pp. ISBN: 978-3-7643-8641-2 (Reviewer: David L. Finn),
    58-02 (35J60 35R45 53-02 53C21 58J05) MR2401291 (2009m:58001)
    [19] P. Tolksdor¤, Everywhere regularity for some quasi-linear systems with a lack of el-
    lipticity, Ann. Mat. Pura Appl. (4) 134 (1983), p. 241–266. 35J70 (35B65) MR0736742
    (85h:35104)
    [20] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138
    (1977), no. 3-4, p. 219–240. MR0474389 (57 #14031)
    [21] N.N. Ural’ceva, Degenerate quasilinear elliptic systems, (Russian) Zap. Nauµcn. Sem.
    Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968) p. 184–222. MR0244628 (39
    #5942)
    [22] J. Wang, Lecture Notes on Geometric Analysis, August, 2005.
    30

    下載圖示
    QR CODE