研究生: |
藍格維 |
---|---|
論文名稱: |
A note on gradient estimate for the equation associated to the p-Laplace operator A note on gradient estimate for the equation associated to the p-Laplace operator |
指導教授: |
陳瑞堂
Chen, Jui-Tang |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 30 |
中文關鍵詞: | p-Laplace operator 、gradient estimate |
英文關鍵詞: | p-Laplace operator, gradient estimate |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this paper, we study p-Laplace operators on complete noncompact manifolds. Ac-
cording to Kotschwar-Ni gradient estimat for positive p-harmonic functions, we extend
their result to more general equation associated to the p-Laplace operator whenever
the sectional curvature of M has lower bound.
In this paper, we study p-Laplace operators on complete noncompact manifolds. Ac-
cording to Kotschwar-Ni gradient estimat for positive p-harmonic functions, we extend
their result to more general equation associated to the p-Laplace operator whenever
the sectional curvature of M has lower bound.
[1] S-C Chang, J-T Chen, S. W. Wei, Liouville properties for p-harmonic maps with
nite
q-energy, arXiv:1211.2899 accepted by Transactions of the AMS
[2] B. Chow and P. Lu and L. Ni, Hamiltons Ricci Flow, Laplacian, volume and Hessian
comparison theorems, p. 67-77.
[3] J.T. Chen and Y. Li and S.W. Wei, Generalized Hardy Type Inequalities, Liouville
Theorems and Picard Theorems in p-Harmonic Geometry, Proceedings of the Conference
RIGA 2011 Riemannian Geometry and Applications Bucharest, Romania, p. 95-108.
[4] E. DiBenedetto, C1; local regularity of weak solutions of degenerate elliptic equations,
Nonlinear Anal. 7 (1983), no. 8, p. 827850. MR0709038 (85d:35037)
[5] L. C. Evans, A new proof of local C1; regularity for solutions of certain degenerate elliptic
p.d.e., J. Di¤erential Equations 45 (1982), no. 3, p. 356373. MR0672713 (84a:35082)
[6] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole. Lecture
Notes in Mathematics, 699. Springer, Berlin, 1979. ii+215 pp.
[7] I. Holopainen, Volume growth, Greens functions, and parabolicity of ends, Duke Math.
J. 97 (1999), no. 2, p. 319346. (Reviewer: Thierry Coulhon) MR1682233 (2000i:58066)
[8] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Ellip-
tic Equations, OxfordMath.Monographs, Clarendon Press, New York, 1993.MR1207810
(94e:31003)
[9] I. Holopainen, S. Pigola, G. Veronelli, Global comparison principles for the p-Laplace op-
erator on Riemannian manifolds, Potential Anal. 34 (2011), no. 4, 371384. MR2786704
(2012e:35256)
[10] R. Hardt, F.-H. Lin, Mappings minimizing the Lp norm of the gradient, Comm. Pure
Appl. Math. 40 (1987), no. 5, p. 555588. MR0896767 (88k:58026)
[11] B. Kotschwar and L. Ni, Local gradient estimate of p-harmonic functions, 1/H ow and
an entropy formula, Ann. Sci. Ec. Norm. Sup. 42 (2009), no. 1, p. 136. MR2518892
(2010g:53121)
[L] P. Li, Geometric analysis. Cambridge Studies in Advanced Mathematics, 134. Cam-
bridge University Press, Cambridge, 2012. x+406 pp. ISBN: 978-1-107-02064-1 (Re-
viewer: Frédéric Robert) 58-02 (35P15 53C21 58J32 58J35)
[12] J. L. Lewis, Capacitary functions in convex rings. Arch. RationalMech. Anal., 66 (1977),
p. 201224. MR0477094 (57 #16638)
[13] P. Lindqvist, Notes on the p-Laplace equation, Report. University of Jyväskylä Depart-
ment of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006. ii+80
pp. ISBN: 951-39-2586-2. MR2242021 (2007h:35102)
[14] P. Li, L.T. Tam, Positive harmonic functions on complete manifolds with nonnegative
curvature outside a compact set, Ann. of Math. 125 (1987), p. 171207. MR0873381
(88m:58039)
[15] P. Li, L.T. Tam, Harmonic functions and the structure of complete manifolds, J. Dif-
ferential Geom. 35 (1992), p. 359383 MR1158340 (93b:53033)
[16] P. Li, J. Wang, Complete manifolds with positive spectrum, J. Di¤erential Geometry
58 (2001), no. 3, p. 501534. MR1906784 (2003e:58046)
[17] P. Li and J.Wang, Complete manifolds with positive spectrum, II, J. Di¤erential Geom.
62 (2002), p. 143162. MR1987380 (2004d:58045)
[18] S. Pigola, M. Rigoli, A.G. Setti, Vanishing and
niteness results in geometric analysis.
A generalization of the Bochner technique, Progress in Mathematics, 266. Birkhäuser
Verlag, Basel, 2008. xiv+282 pp. ISBN: 978-3-7643-8641-2 (Reviewer: David L. Finn),
58-02 (35J60 35R45 53-02 53C21 58J05) MR2401291 (2009m:58001)
[19] P. Tolksdor¤, Everywhere regularity for some quasi-linear systems with a lack of el-
lipticity, Ann. Mat. Pura Appl. (4) 134 (1983), p. 241266. 35J70 (35B65) MR0736742
(85h:35104)
[20] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138
(1977), no. 3-4, p. 219240. MR0474389 (57 #14031)
[21] N.N. Uralceva, Degenerate quasilinear elliptic systems, (Russian) Zap. Nauµcn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968) p. 184222. MR0244628 (39
#5942)
[22] J. Wang, Lecture Notes on Geometric Analysis, August, 2005.
30