簡易檢索 / 詳目顯示

研究生: 許王安詒
HSU WANG, An-Yi
論文名稱: 以混合多準則決策分析法發展車聯網之發展情境與平台
Defining the Development Scenarios and Platforms for IoVs Based on Hybrid MCDM Methods
指導教授: 呂有豐
Lue, Yeou-Feng
口試委員: 羅乃維
Lo, Nal-Wei
黃日鉦
Hang, Jih-Jeng
呂有豐
LUE, You-Feng
口試日期: 2021/08/07
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 137
中文關鍵詞: 物聯網車聯網宏觀環境分析模型情境分析混合多準則決策分析多準則折衷評估方法
英文關鍵詞: Internet of Things (IoT), Internet of Vehicles (IoV), PESTEL Analysis, Scenario Analysis, Hybrid Multiple Criteria Decision Making (Hybrid MCDM), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)
DOI URL: http://doi.org/10.6345/NTNU202101771
論文種類: 學術論文
相關次數: 點閱:365下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技發展,人們對汽車等交通工具新功能的需求日增,希望能在車內做更多的事情。車聯網技術,可以解決大部份問題,豐富「汽車生活」。車聯網技術的成熟,無疑帶動更多行動裝置、雲端系統、甚至技術的演進,也改變的人類生活的方式。雖然車聯網世代即將來臨,卻少有學者從市場資訊及數位生活的角度探討車聯網的發展場景和平台。本研究將導入情境分析和混合多準則決策分析法 (Multiple Criteria Decision Making, MCDM),定義三個未來車聯網發展之情境與對應平台。第一階段分析以宏觀環境(Political, Economic, Social, Technological, Environmental and Legal, PESTEL)模型為基礎,導入混合多準則決策模型,訂定最適情境。第二階段分析導入混合多準則決策模型,定義車聯網平台元素。兩階段皆利用專家問卷,採德爾菲法篩選出適用的準則,再用決策試驗實驗室評估法(Decision Making Trial and Evaluation Laboratory, DEMATEL)計算出構面及準則間的影響關係與重要性,並結合基於決策實驗室評估法之網路流程 (DEMATEL-based Analytic Network Process, DANP),權衡與評估準則的權重。最後透過多準則折衷評估方法(VlseKriterijumska Optimizacija I Kompromisno Resenje, VIKOR),從折衷排名中獲得車聯網未來三個主要發展情境;也推衍出最適合該情境之車聯網平台。依據研究結果,未來車聯網之主要發展情境包括萌芽、繁榮與成熟等三情境,因應三情境之車聯網平台,主要差異包括繁榮期三維環場相機模組之整合、與成熟期客製化模組之提供。本研究之結果,可為車聯網業者發展平台之依據,分析架構也可為其他平台發展之用。

    With the improvement of technology, people's needs for novel functions of vehicles are increased day by day. In order to execute most of the tasks required within the future car, the Internet of Vehicles (IoV) technology is essential support the "car life". The coming IoV technology will undoubtedly drive the evolution of more mobile devices, cloud systems, and even technology, and change the life style. Though the era of IoV is arriving, very few scholars discussed the development scenarios and platforms of the IoV from the perspective of market information and digital life. This research will introduce scenario analysis and Multiple Criteria Decision Making (MCDM) methods to define three scenarios and corresponding IoV platforms for the development of the IoVs in the future. The first stage of analysis is based on the Political, Economic, Social, Technological, Environmental and Legal (PESTEL) model, introducing a hybrid MCDM model to determine the most suitable scenario. The second stage of the analysis imports a hybrid MCDM model to define the elements of the IoV platform. Both stages are based on experts’ opinions. The Delphi method will be adopted to filter possible criteria. Then the Decision Making Trial and Evaluation Laboratory (DEMATEL) is adopted to derive the influence relationships among the dimensions and the criteria. Next, the DEMATEL-based Analytic Network Process (DANP) is used to evaluate the weights of related criteria. Finally, through the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), the three main development scenarios of the IoV in the future should be obtained from the compromise ranking derived by VIKOR, and the most suitable platform elements of IoV for these scenarios are also derived. According to the research results, the main development scenarios of the future IoVs include three scenarios: budding, prosperity, and maturity. In response to the three-scenario IoVs platform, the main differences include the integration of three-dimensional surrounding camera modules in the boom period and the customized model in the mature period. Provided by the group. The results of this study can be used as a basis for the development of platforms for the connected car industry, and the analytical framework can also be used for the development of other platforms.

    摘要 i Abstract ii Table of Contents iv List of Tables vi List of Figures viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivations 1 1.3 Research Purposes 2 1.4 Research Objectives 3 1.5 Research Methods 3 1.6 Research Limitations 4 1.7 Thesis Structure 4 Chapter 2 Literature Review 7 2.1 Internet of Things 7 2.2 Internet of Vehicles 9 2.3 Scenario Analysis 14 2.4 PESTEL Analysis 17 2.5 Platform-Based Design 18 Chapter 3 Research Method 21 3.1 Modified Delphi Method 21 3.2 DEMATEL 22 3.3 DANP 23 3.4 VIKOR 25 Chapter 4 Empirical Study 27 4.1 First Stage to Choose the Development Scenarios 27 4.2 Second Stage to Choose the Elements that Define the Platform 61 Chapter 5 Discussion 99 5.1 Combination of Scenarios and Technology Platform Deployment 99 5.2 Future Research 102 Chapter 6 Conclusions 103 References 105 Appendix 115 Appendix A 115 Appendix B 121 Appendix C 125 Appendix D 127 Appendix E 135

    Afzal, B., Umair, M., Shah, G. A., & Ahmed, E. (2019). Enabling IoT platforms for social IoT applications: Vision, feature mapping, and challenges. Future Generation Computer Systems, 92, 718-731.
    AKMAN, M. K. (2020). DEFENCE MANAGEMENT AND PESTLE ANALYSIS. ANTE PORTAS, 93.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376.
    Alam, M., Reaz, M., & Ali, M. (2011). Statistical modeling of the resident's activity interval in smart homes. Journal of Applied Sciences, 11(16), 3058-3061.
    Amer, M., Daim, T. U., & Jetter, A. (2013). A review of scenario planning. Futures, 46, 23-40.
    Ang, L.-M., Seng, K. P., Ijemaru, G. K., & Zungeru, A. M. (2018). Deployment of IoV for smart cities: applications, architecture, and challenges. IEEE Access, 7, 6473-6492.
    Arena, F., & Pau, G. (2019). An overview of vehicular communications. Future Internet, 11(2), 27.
    Arunvivek, J., Srinath, S., & Balamurugan, M. (2015). Framework development in home automation to provide control and security for home automated devices. Indian Journal of Science and Technology, 8(19).
    Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122-140.
    Axson, D. A. (2018). Scenario Planning, Applying a Six-Step Process to Your Organization. Toronto, Canada: Canadian Professional Accountants of Canada.
    Börjeson, L., Höjer, M., Dreborg, K.-H., Ekvall, T., & Finnveden, G. (2006). Scenario types and techniques: towards a user's guide. Futures, 38(7), 723-739.
    Balta-Ozkan, N., Davidson, R., Bicket, M., & Whitmarsh, L. (2013). The development of smart homes market in the UK. Energy, 60, 361-372.
    Bello, O., & Zeadally, S. (2014). Intelligent device-to-device communication in the internet of things. IEEE Systems Journal, 10(3), 1172-1182.
    Bengisu, M., & Nekhili, R. (2006). Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change, 73(7), 835-844.
    Bertoni, M. (2019). Multi-criteria decision making for sustainability and value assessment in early PSS design. Sustainability, 11(7), 1952.
    Bonomi, F. (2013). The Smart and Connected Vehicle and the Internet of Things. Paper presented at the Invited Talk, Workshop on Synchronization in Telecommunication Systems. Retrieved from https://tf.nist.gov/seminars/WSTS/PDFs/1-0_Cisco_FBonomi_ ConnectedVehicles.pdf
    Bossle, M. B., de Barcellos, M. D., Vieira, L. M., & Sauvée, L. (2016). The drivers for adoption of eco-innovation. Journal of Cleaner Production, 113, 861-872.
    Chan, M., Estève, D., Escriba, C., & Campo, E. (2008). A review of smart homes—Present state and future challenges. Computer Methods and Programs in Biomedicine, 91(1), 55-81.
    Chiu, W.-Y., Tzeng, G.-H., & Li, H.-L. (2013). A new hybrid MCDM model combining DANP with VIKOR to improve e-store business. Knowledge-Based Systems, 37, 48-61.
    Chermack, T. J., Lynham, S. A., & Ruona, W. E. (2001). A review of scenario planning literature. Futures Research Quarterly, 17(2), 7-32.
    Chowdhury, D. N., Agarwal, N., Laha, A. B., & Mukherjee, A. (2018). A vehicle-to-vehicle communication system using Iot approach. Paper presented at the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). Retrieved from https://ieeexplore.ieee.org/document/8474909
    Contreras-Castillo, J., Zeadally, S., & Guerrero Ibáñez, J. A. (2017). A seven-layered model architecture for Internet of Vehicles. Journal of Information and Telecommunication, 1(1), 4-22.
    Costa, F., Denis Granja, A., Fregola, A., Picchi, F., & Portioli Staudacher, A. (2019). Understanding relative importance of barriers to improving the customer–supplier relationship within construction supply chains using DEMATEL technique. Journal of Management in Engineering, 35(3), 04019002.
    Davis, F. L. (1994). Back to the future: The buyer's market and the need for law firm leadership, creativity and innovation. Campbell L. Rev., 16, 147.
    Dawid, H., Decker, R., Hermann, T., Jahnke, H., Klat, W., König, R., & Stummer, C. (2017). Management science in the era of smart consumer products: Challenges and research perspectives. Central European Journal of Operations Research, 25(1), 203-230.
    Dean, S. (2017). Amazon, Samsung, Google, Apple: Big 4 Driving Smart home Device Sales. Tech Times. Retrieved from
    http://www.techtimes.com/articles/192188/20170113/amazon-samsunggoogle-apple-big-4-driving-smart-home-device-sales.htm
    Del Giudice, M. (2016). Discovering the Internet of Things (IoT) within the business process management: A literature review on technological revitalization. Business Process Management Journal Journal, 22, 263–270.
    Ehrenhard, M., Kijl, B., & Nieuwenhuis, L. (2014). Market adoption barriers of multi-stakeholder technology: Smart homes for the aging population. Technological Forecasting and Social Change, 89, 306-315.
    Estes, R. J. (2018). Eduard Pestel (1914–1988): A pioneer in social indicators, world systems modeling, industrial design, politics and public policy. Applied Research in Quality of Life, 13(2), 525-526.
    Gabus, A., & Fontela, E. (1973). Perceptions of the world problematique: communication procedure, communicating with those bearing collective responsibility. (DEMATEL Report No. 1). Geneva, Switzerland: Battelle Geneva Research Center.
    Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9-29.
    Geels, F. W. (2005). Processes and patterns in transitions and system innovations: Refining the co-evolutionary multi-level perspective. Technological Forecasting and Social Change, 72(6), 681-696.
    Habibzadeh, H., Soyata, T., Kantarci, B., Boukerche, A., & Kaptan, C. (2018). Sensing, communication and security planes: A new challenge for a smart city system design. Computer Networks, 144, 163-200.
    Hong, A., Nam, C., & Kim, S. (2020). What will be the possible barriers to consumers’ adoption of smart home services? Telecommunications Policy, 44(2), 101867.
    Hong, J., Shin, J., & Lee, D. (2016). Strategic management of next-generation connected life: Focusing on smart key and car–home connectivity. Technological Forecasting and Social Change, 103, 11-20. doi: 10.1016/j.techfore.2015.10.006
    Huang, C.-Y., Yang, C.-L., & Hsiao, Y.-H. (2021). A novel framework for mining social media data based on text mining, topic modeling, random forest, and DANP methods. Mathematics, 9(17), 2041.
    Huang, C.-Y., Wang, L.-C., Kuo, Y.-T., & Huang, W.-T. (2021). A Novel Analytic Framework of Technology Mining Using the Main Path Analysis and the Decision-Making Trial and Evaluation Laboratory-Based Analytic Network Process. Mathematics, 9(19), 2448.
    Huang, C.-Y., Yang, M.-J., Li, J.-F., & Chen, H. (2021). A danp-based ndea-mop approach to evaluating the patent commercialization performance of industry–academic collaborations. Mathematics, 9(18), 2280.
    Hussain, S. A., Yusof, K. M., Hussain, S. M., & Singh, A. V. (2019). A Review of Quality of Service Issues in Internet of Vehicles (IoV). Paper presented at the 2019 Amity International Conference on Artificial Intelligence (AICAI). Retrieved from https://ieeexplore.ieee.org/abstract/document/8701299
    Ighravwe, D. E., & Oke, S. A. (2019). A multi-criteria decision-making framework for selecting a suitable maintenance strategy for public buildings using sustainability criteria. Journal of Building Engineering, 24, 100753.
    Indu, S. K. (2019). Internet of vehicles (IoV): Evolution, architecture, security issues and trust aspects. International Journal of Recent Technology and Engineering, 7(6), 268-280.
    Iqbal, R., Butt, T. A., Shafiq, M. O., Talib, M. W. A., & Umar, T. (2018). Context-aware data-driven intelligent framework for fog infrastructures in internet of vehicles. IEEE Access, 6, 58182-58194.
    Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., & Liu, X. (2016). Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4, 5356-5373.
    Keegan, R. J., Barnett, L. M., Dudley, D. A., Telford, R. D., Lubans, D. R., Bryant, A. S., . . . Weissensteiner, J. R. (2019). Defining physical literacy for application in Australia: A modified delphi method. Journal of Teaching in Physical Education, 38(2), 105-118.
    Khedekar, D. C., Truco, A. C., Oteyza, D. A., & Huertas, G. F. (2017). Home Automation—A Fast‐Expanding Market. Thunderbird International Business Review, 59(1), 79-91.
    Kizawa, Y., Tsuneto, S., Tamba, K., Takamiya, Y., Morita, T., Bito, S., & Otaki, J. (2012). Development of a nationwide consensus syllabus of palliative medicine for undergraduate medical education in Japan: a modified Delphi method. Palliative Medicine, 26(5), 744-752.
    Kuo, T. C., Hsu, C. W., & Li, J. Y. (2015). Developing a green supplier selection model by using the DANP with VIKOR. Sustainability, 7(2), 1661-1689.
    Leilabadi, S. H., Katzorke, N., Moosmann, M., & Schmidt, S. (2020). Systematic Test Case Design for Autonomous Vehicles. Paper presented at the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). Retrieved from https://ieeexplore.ieee.org/document/9294389
    Lettner, M., Schöggl, J.-P., & Stern, T. (2017). Factors influencing the market diffusion of bio-based plastics: Results of four comparative scenario analyses. Journal of Cleaner Production, 157, 289-298.
    Liang, J., & Chen, A. (2021). Review on Social Welfare Crowdfunding in China Based on PEST-SWOT Model. Complexity, 2021.
    Li, T., Li, C., Luo, J., & Song, L. (2020). Wireless recommendations for internet of vehicles: Recent advances, challenges, and opportunities. Intelligent and Converged Networks, 1(1), 1-17.
    Liu, N. (2011, Dec). Internet of Vehicles: Your next connection. Win-Win, 11, 23-28. Retrieved from https://www.huawei.com/ en/about- huawei/publications/winwinmagazine/11/HW_110848.html
    Lueth, K. L. (2018). State of the IoT 2018: Number of IoT devices now at 7B–Market accelerating. IoT Analytics, Retrieved from https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
    Marikyan, D., Papagiannidis, S., & Alamanos, E. (2019). A systematic review of the smart home literature: A user perspective. Technological Forecasting and Social Change, 138, 139-154.
    Mau, P., Eyzaguirre, J., Jaccard, M., Collins-Dodd, C., & Tiedemann, K. (2008). The ‘neighbor effect’: Simulating dynamics in consumer preferences for new vehicle technologies. Ecological Economics, 68(1-2), 504-516.
    Meesapawong, P., Rezgui, Y., & Li, H. (2014). Planning innovation orientation in public research and development organizations: Using a combined Delphi and analytic hierarchy process approach. Technological Forecasting and Social Change, 87, 245-256.
    Mihailova, M. (2020). The state of agriculture in Bulgaria–PESTLE analysis. Bulgarian Journal of Agricultural Science, 26(5), 935-943.
    Minea, M., Dumitrescu, C., Costea, I. M., Chiva, I. C., & Semenescu, A. (2020). Developing a Solution for Mobility and Distribution Analysis Based on Bluetooth and Artificial Intelligence. Sensors, 20(24), 7327.
    MOSTAFA, A. A., YOUSSEF, K., & Abdelrahman, M. (2020). Analysis of Photovoltaics in Egypt using SWOT and PESTLE. International Journal of Applied Energy Systems, 2(1), 11-14.
    Nakata, T. (2004). Energy-economic models and the environment. Progress in Energy and Combustion Science, 30(4), 417-475.
    Nakicenovic, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T., & Kram, T. (2000). A special report of Working Group III of the Intergovernmental Panel on Climate Change. Emissions Scenarios, 570.
    Nielsen, S. K., & Karlsson, K. (2007). Energy scenarios: A review of methods, uses and suggestions for improvement. International Journal of Global Energy Issues, 27(3), 302-322.
    Nowack, M., Endrikat, J., & Guenther, E. (2011). Review of Delphi-based scenario studies: Quality and design considerations. Technological Forecasting and Social Change, 78(9), 1603-1615.
    Oksman, V., & Egan, J. (2010). Applications of ITUT G. 9960, ITU-T G. 9961 transceivers for Smart Grid applications: Advanced metering infrastructure, energy management in the home and electric vehicles. ITU-T Technical Paper, 6, 1-32.
    Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5-21.
    Opricovic, S., & Tzeng, G.-H. (2003). Fuzzy multicriteria model for postearthquake land-use planning. Natural Hazards Review, 4(2), 59-64.
    Pan, W., Chen, L., & Zhan, W. (2019). PESTEL analysis of construction productivity enhancement strategies: A case study of three economies. Journal of Management in Engineering, 35(1), 05018013.
    Peine, A. (2008). Technological paradigms and complex technical systems—the case of smart homes. Research Policy, 37(3), 508-529.
    Prina, M. G., Manzolini, G., Moser, D., Nastasi, B., & Sparber, W. (2020). Classification and challenges of bottom-up energy system models-A review. Renewable and Sustainable Energy Reviews, 129, 109917.
    Priyan, M., & Devi, G. U. (2019). A survey on internet of vehicles: applications, technologies, challenges and opportunities. International Journal of Advanced Intelligence Paradigms, 12(1-2), 98-119.
    Pundir, S., Wazid, M., Singh, D. P., Das, A. K., Rodrigues, J. J., & Park, Y. (2020). Designing Efficient Sinkhole Attack Detection Mechanism in Edge-Based IoT Deployment. Sensors, 20(5), 1300.
    Quyên, Đ. T. N. (2014). Developing university governance indicators and their weighting system using a modified Delphi method. Procedia-Social and Behavioral Sciences, 141, 828-833.
    Racz, L., Fozer, D., Nagy, T., Toth, A. J., Haaz, E., Tarjani, J. A., Andre, A., Selim, A., Valentinyi, N., & Mika, L. T. (2018). Extensive comparison of biodiesel production alternatives with life cycle, PESTLE and multi-criteria decision analyses. Clean Technologies and Environmental Policy, 20(9), 2013-2024.
    Rossouw, A., Hacker, M., & de Vries, M. J. (2011). Concepts and contexts in engineering and technology education: An international and interdisciplinary Delphi study. International Journal of Technology and Design Education, 21(4), 409-424.
    Scott, D. G., Washer, B. A., & Wright, M. D. (2006). A Delphi Study to Identify Recommended Biotechnology Competencies for First-Year/Initially Certified Technology Education Teachers. Journal of Technology Education, 17(2), 43-55.
    Shieh, J.-I., Wu, H.-H., & Huang, K.-K. (2010). A DEMATEL method in identifying key success factors of hospital service quality. Knowledge-Based Systems, 23(3), 277-282.
    Shuai, M., Yu, N., Wang, H., & Xiong, L. (2019). Anonymous authentication scheme for smart home environment with provable security. Computers & Security, 86, 132-146.
    Solé, J., Samsó, R., García-Ladona, E., Garcia-Olivares, A., Ballabrera-Poy, J., Madurell, T., Turiel, A., Osychenko, O., Álvarez, D., & Bardi, U. (2020). Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renewable and Sustainable Energy Reviews, 132, 110105.
    Sung, W.-T., Chuang, T.-H., Chen, J.-H., & Chang, K.-Y. (2015). IOT-type Cloud Online Real-Time Multi-Car Localization and Communication System. Paper presented at the 2015 International Conference on Computational Intelligence and Communication Networks (CICN). Retrieved from https://ieeexplore.ieee.org/document/7546228
    Szarka, N., Eichhorn, M., Kittler, R., Bezama, A., & Thrän, D. (2017). Interpreting long-term energy scenarios and the role of bioenergy in Germany. Renewable and Sustainable Energy Reviews, 68, 1222-1233.
    Talal, M., Zaidan, A., Zaidan, B., Albahri, A., Alamoodi, A., Albahri, O., Alsalem, M., Lim, C., Tan, K. L., & Shir, W. (2019). Smart home-based IoT for real-time and secure remote health monitoring of triage and priority system using body sensors: Multi-driven systematic review. Journal of Medical Systems, 43(3), 42.
    Tarkoma, S., & Katasonov, A. (2011). Internet of things strategic research agenda (IoT–SRA). Retrieved from http://www.internetofthings.fi/extras/internet-of-things-strategic-research-agenda.pdf
    Thirugnanam, T., & Ghalib, M. R. (2020). A new healthcare architecture using IoV technology for continuous health monitoring system. Health and Technology, 10(1), 289-302.
    Trutnevyte, E., McDowall, W., Tomei, J., & Keppo, I. (2016). Energy scenario choices: Insights from a retrospective review of UK energy futures. Renewable and Sustainable Energy Reviews, 55, 326-337.
    Udoh, I. S., & Kotonya, G. (2018). Developing IoT applications: challenges and frameworks. IET Cyber-Physical Systems: Theory & Applications, 3(2), 65-72.
    Wan, J., Zhang, D., Zhao, S., Yang, L. T., & Lloret, J. (2014). Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Communications Magazine, 52(8), 106-113.
    Winkler, J., Kuklinski, C. P. J.-W., & Moser, R. (2015). Decision making in emerging markets: The Delphi approach's contribution to coping with uncertainty and equivocality. Journal of Business Research, 68(5), 1118-1126.
    Wu, W.-W., & Lee, Y.-T. (2007). Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499-507.
    Xu, X., Li, H., Xu, W., Liu, Z., Yao, L., & Dai, F. (2021). Artificial intelligence for edge service optimization in internet of vehicles: A survey. Tsinghua Science and Technology, 27(2), 270-287.
    Yang, F., Wang, S., Li, J., Liu, Z., & Sun, Q. (2014). An overview of internet of vehicles. China Communications, 11(10), 1-15.
    Yang, H., Lee, H., & Zo, H. (2017). User acceptance of smart home services: an extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68-89
    Yoon, K. (1987). A reconciliation among discrete compromise solutions. Journal of the Operational Research Society, 38(3), 277-286.
    Yoon, K. P., & Hwang, C.-L. (1995). Multiple attribute decision making: An introduction. London, England: Sage.
    Yu, P.-L. (1973). A class of solutions for group decision problems. Management Science, 19(8), 936-946.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi: 10.1016/S0019-9958(65)90241-X
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22-32.
    Zha, X. F., & Sriram, R. D. (2006). Platform-based product design and development: A knowledge-intensive support approach. Knowledge-Based Systems, 19(7), 524-543.
    Zhou, X., Shi, Y., Deng, X., & Deng, Y. (2017). D-DEMATEL: A new method to identify critical success factors in emergency management. Safety Science, 91, 93-104.

    無法下載圖示 電子全文延後公開
    2026/10/26
    QR CODE