簡易檢索 / 詳目顯示

研究生: 凌家東
Chia-Tung Ling
論文名稱: 拋物型問題的奇異點研究
The Study of Singularities for Two Parabolic Problems
指導教授: 郭忠勝
Guo, Jong-Shenq
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 43
中文關鍵詞: 殆核解非自我相似複數值熱方程消失性
英文關鍵詞: dead-core, non-self-similar, complex-valued heat equation, quenching
論文種類: 學術論文
相關次數: 點閱:108下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們要討論從二個拋物型方程得到的二種不同類型的奇異點問題。本論文分為二個部份,
    在第一部份中,我們考慮具有快速擴散項與強吸收非線性項之方程的殆核問題。首先,我們證明解殆核的速度是非自我相似的。接著,在考慮重新縮放的解與殆核最終在單點發生的狀態下,我們得到一些更精確的估計。
    在第二部份中,我們探討一個由複數取值的熱方程得到的柯西問題,而其中的非線性項是倒數型的。首先,我們提供了一些解的全局存在性與消失性的判斷準則。接下來,我們證明當初始值為漸近常數時,解是否會在無窮遠處消失或是在任意的時間內全局存在,均依賴於初始值的漸近極限值。

    In this thesis, we study two different singularities arising from two parabolic problems.
    This thesis is divided into two parts. In the first part, we consider the dead-core problem for the fast diffusion equation with a strong absorption. First, we show that the temporal rate of formation of the dead-core is not self-similar. Then we obtain some precise estimates on rescaled solutions and on the single-point final dead-core profile. In the second part, we study the Cauchy problem for a parabolic system which is derived from a complex-valued heat equation with an inverse nonlinearity. We first provide some criteria for the global existence and quenching of solutions. Then we show that, for the initial data which are asymptotically constants, the solution either quenches at space infinity or exists globally in time depending on the asymptotic limits.

    1 Introduction...................................... 1 1.1 Non-self-similar dead-core rate................. 1 1.2 Dynamics for a complex-valued heat equation......3 2 Non-self-similar dead-core rate................... 5 2.1 Introduction............................... .... 5 2.2 Proof of Theorem 2.1.1 ......................... 9 2.3 Some a priori estimates.........................10 2.4 The associated ordinary differential equation...13 2.5 Proof of Theorem 2.1.3..........................19 3 Dynamics for a complex-valued heat equation.......25 3.1 Introduction .................................. 25 3.2 Global existence and Convergence ...............28 3.3 Asymptotically constant initial data ...........31 4 References .......................................37

    [1] U.G. Abdulla, Evolution of interfaces and explicit asymptotics at infinity for the fast diffusion equation with absorption, Nonlinear Anal. 50 (2002), 541-560.

    [2] C. Bandle, T. Nanbu, I. Stakgold, Porous medium equation with absorption, SIAM J. Math. Anal. 29 (1998), 1268-1278.

    [3] C. Bandle, I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems, Trans. Amer. Math. Soc. 286 (1984), 275-293.

    [4] Q. Chen, L. Wang, On the dead core behavior for a semilinear heat equation, Math. Appl. 10 (1997), 22-25.

    [5] X.-F. Chen, J.-S. Guo, B. Hu, Dead-core rates for the porous medium equation with a strong absorption, Discrete Contin. Dyn. Syst. Series B (to appear).

    [6] X.-Y. Chen, H. Matano, M. Mimura, Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption, J. Reine Angew. Math.459 (1995), 1-36.

    [7] H.J. Choe, G.S. Weiss, A semilinear parabolic equation with free boundary, Indiana Univ. Math. J. 52 (2003), 19-50.

    [8] R. Ferreira, V.A. Galaktionov, J.L. Vazquez, Uniqueness of asymptotic profiles for an extinction problem, Nonlinear Anal. 50 (2002), 495-507.

    [9] R. Ferreira, A. de Pablo, F. Quir\'os, J.D. Rossi, Non-simultaneous quenching in a system of heat equations coupled at the boundary, Z. Angew. Math. Phys. 57 (2006),
    586-594.

    [10] R. Ferreira, J.L. Vazquez, Extinction behaviour for fast diffusion equations with absorption, Nonlinear Anal. 43 (2001), 943-985.

    [11] M. Fila, J. Hulshof, A note on the quenching rate, Proc. Amer. Math. Soc. 112 (1991),473-477.
    39

    [12] A. Friedman, M.A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987), 530-546.

    [13] A. Friedman, J.B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447.

    [14] V.A. Galaktionov, Geometric theory of one-dimensional nonlinear parabolic equations. I. Singular interfaces. Adv. Di_erential Equations 7 (2002), 513-580.

    [15] V.A. Galaktionov, S. Shmarev, J.L. V\'azquez, Second-order interface equations for nonlinear diffusion with very strong absorption, Commun. Contemp. Math. 1 (1999),51-64.

    [16] V.A. Galaktionov, S. Shmarev, J.L. V\'azquez, Regularity of interfaces in diffusion processes under the influence of strong absorption, Arch. Ration. Mech. Anal. 149 (1999), 183-212.

    [17] V.A. Galaktionov, S. Shmarev, J.L. V\'azquez, Behaviour of interfaces in a diffusion-absorption equation with critical exponents, Interfaces Free Bound. 2 (2000), 425-448.

    [18] Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319.

    [19] Y. Giga, R.V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40.

    [20] Y. Giga, Y. Seki, N. Umeda, Mean curvature flow closes open ends of noncompact surfaces of rotation, Comm. Partial Differential Equations 34 (2009), 1508-1529.

    [21] Y. Giga, Y. Seki, N. Umeda, On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow, Discrete Contin. Dyn. Syst. 29 (2011), 1463-1470.

    [22] J.-S. Guo, On the quenching behavior of the solution of
    a semilinear parabolic equation, J. Math. Anal. Appl. 151 (1990), 58-79.

    [23] J.-S. Guo, On the quenching rate estimate, Quarterly Appl. Math. 49 (1991), 747-752.

    [24] J.-S. Guo, Quenching behavior for a fast diffusion equation with absorption, Dynamic Systems and Applications. 4 (1995), 47-56.

    [25] J.-S. Guo, B. Hu, Quenching profile for a quasilinear parabolic equation, Quarterly Appl. Math. 58 (2000), 613-626.

    [26] J.-S. Guo, B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dynam. Syst. 20 (2008), 927-937.

    [27] J.-S. Guo, C.-T. Ling, Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption, Nonlinearity 23 (2010), 657-673.

    [28] J.-S. Guo, H. Ninomiya, M. Shimojo, E. Yanagida, Convergence and blow-up of solutions for a complex-valued heat equation with a quadratic nonlinearity, Trans. Amer. Math. Soc. (to appear).

    [29] J.-S. Guo, Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up, Math. Ann. 331 (2005), 651-667.

    [30] J.-S. Guo, C.-C. Wu, Finite time dead-core rate for
    the heat equation with a strong absorption, Tohoku Math. J. 60 (2008), 37-70.

    [31] Z. Guo, J.Wei, On the Cauchy problem for a reaction-diffusion equation with a singular nonlinearity, J. Differential Equations 240 (2007), 279-323.

    [32] M.A. Herrero, J.J.L. Vel\'azquez, On the dynamics of a semilinear heat equation with strong absorption, Comm. Partial Diff. Equations 14 (1989), 1653-1715.

    [33] M.A. Herrero, J.J.L. Vel_azquez, Approaching an extinction point in one-dimensional semilinear heat equations with strong absorption, J. Math. Anal. Appl. 170 (1992),353-381.

    [34] M.A. Herrero, J.J.L. Velazquez, Explosion de solutions des \'equations paraboliques semilin\'eaires supercritiques, C.R. Acad. Sci. Paris t. 319 (1994), 141-145.

    [35] M.A. Herrero, J.J.L. Velazquez, A blow up result for semilinear heat equations in
    the supercritical case, (1994) unpublished.

    [36] B. Hu, Z. Zhang, Gradient blowup rate for a semilinear parabolic equation, Discrete Contin. Dynam. Syst. 26 (2010), 767-779.

    [37] H. Kawarada, On solutions of initial-boundary problem for $u_{t}=u_{xx}+1/(1-u)$, Res. Inst. Math. Sci. 10 (1975), 729-736.

    [38] H.A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura Appl. 155 (1989), 243-260.

    [39] H.A. Levine, Quenching and beyond: a survey of recent results. Nonlinear Mathematical Problems in Industry, GAKUTO International Series, Math. Sci. Appl., Vol. 2, 1993, pp. 501-512.

    [40] Y.-X. Li, Ph. Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains, Comm. Math. Phys. 243 (2010), DOI10.1007/s00220-009-0936-8, published online

    [41] H. Matano, F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 4 (2009), 992-1064.

    [42] F. Merle, H. Zaag, Refined uniform estimates at blow-up and applications for nonlinear heat equations, GAFA Geom. Funct. Anal. 8 (1998), 1043-1085.

    [43] C. Mu, S. Zhou, D. Liu, Quenching for a reaction-diffusion system with logarithmic singularity, Nonlinear Anal. 71 (2009), 5599-5605.

    [44] N. Nouaili, A Liouville theorem for a heat equation and applications for quenching, Nonlinearity 24 (2011), 797-832.

    [45] A. de Pablo, F. Quir\'os, J.D. Rossi, Non-simultaneous quenching, Appl. Math. Lett. 15 (2002), 265-269.

    [46] L.A. Peletier, W.C. Troy, On nonexistence of similarity solutions, J. Math. Anal. Appl.133 (1988), 57-67.

    [47] L.A. Peletier, J.-N. Zhao, Large time behaviour of solutions of the porous media equation with absorption: the fast diffusion case, Nonlinear Anal. 17 (1991), 991-1009.

    [48] M. del Pino, M. S\'aez, Asymptotic description of vanishing in a fast-diffusion equation with absorption, Differential Integral Equations 15 (2002), 1009-1023.

    [49] Y. Seki, On directional blow-up for quasilinear parabolic equations with fast diffusion, J. Math. Anal. Appl. 338 (2008), 572-587.

    [50] Y. Seki, Exact dead-core rates for a semilinear heat equation with strong absorption in R^N, Commun. Contemp. Math. 13 (2011), 1-52.

    [51] M. Shimojo, N. Umeda, Blow-up at space infinity for solutions of cooperative reaction-diffusion systems, Funkcialaj Ekvacioj. 54 (2011), 315-334.

    [52] Ph. Souplet, F.B. Weissler, Self-similar subsolutions and blowup for nonlinear parabolic equations, J. Math. Anal. Appl. 212 (1997), 60-74.

    [53] I. Stakgold, Reaction-diffusion problems in chemical engineering,
    Nonlinear diffusion problems (Montecatini Terme, 1985), Lecture Notes in Math., 1224, Springer, Berlin,1986, pp. 119-152.

    [54] G.S. Weiss, The free boundary of a thermal wave in a strongly absorbing medium, J. Differential Equations 160 (2000), 357-388.

    [55] F.B. Weissler, An $L^\infty$ blow-up estimate for a nonlinear heat equation, Comm. Pure Appl. Math. 38 (1985), 291-295.

    [56] H. Weinberger, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. 8 (1975), 295-310.

    [57] M. Winkler, Infinite-time quenching in a fast diffusion equation with strong absorption, Nonlinear Diff. Equations Appl. 16 (2009), 41-61.

    [58] H.-M. Yin, The Lipschitz continuity of the interface in the heat equation with strong absorption, Nonlinear Anal. 20 (1993), 413-416.

    [59] T.I. Zelenjak, Stabilization of solutions of boundary value problems for a second
    order parabolic equation with one space variable, Differential Equations 4 (1968), 17-22.

    [60] S. Zheng, W. Wang, Non-simultaneous versus simultaneous quenching in a coupled nonlinear parabolic system, Nonlinear Anal. 69 (2008), 2274-2285.

    [61] Y. Zhi, C. Mu Non-simultaneous quenching in a semilinear parabolic system with weak singularities of logarithmic type, Appl. Math. Comput. 196 (1975), 17-23.

    下載圖示
    QR CODE