簡易檢索 / 詳目顯示

研究生: 孫永翔
Yung-Hsiang Sun
論文名稱: 矽奈米線元件應用於有機溶劑氣體感測之研究
Enhanced Sensing property of volatile organic solvents vapor by silicon nanowires device
指導教授: 程金保
Cheng, Chin-Pao
鄭淳護
Cheng, Chun-Hu
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 76
中文關鍵詞: 矽奈米線有機溶劑無電化學蝕刻孤對電子羰基
英文關鍵詞: silicon nanowires, organic solvents, electroless chemical etching, long pair electron, carbonyl group
論文種類: 學術論文
相關次數: 點閱:168下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用自發性電化學蝕刻方式在矽基板上製備矽奈米線陣列,透過改變蝕刻時間來製作不同長度的矽奈米線,並將其應用於有機溶劑氣體之感測。實驗結果發現,蝕刻時間增加,矽奈米線長度也會隨之增加。且對於有機溶劑氣體感測之靈敏度,也隨著線長愈長而靈敏度愈好。本研究中並討論有機溶劑氣體分子與矽奈米線表面的反應性,在生活中常見的有機溶劑,本研究選用不具有極性且沒有孤對電子的正戊烷和正己烷,以及具有極性且有兩對孤對電子的甲醇、乙醇和丙酮作為待測有機溶劑。醇類具有由-OH官能基所產生的分子間氫鍵,而丙酮不具氫鍵但含有羰基(C=O),研究結果顯示矽奈米線對含有羰基之丙酮有最好的反應性及感測靈敏度,而對烷類氣體則感測效果不佳。進一步製作N型與P型矽奈米線比較感測性質差異,結果顯示載子為電子的N型試片在感測過程中電阻值會下降;而載子為電洞的P型試片電阻值則會上升,進一步透過高摻雜之P型與N型試片來做感測並且探討感測機制與提升效果。最後透過Elovich吸附方程式發現在感測初期時圖形呈現線性行為,換算之電流差值越小則代表感測效果越好。

    Herein this study reports the preparation of silicon nanowires by using the electroless chemical etching method. Different lengths of silicon nanowires array can be obtained by changing the etching time. These arrays are used as sensors in detection of volatility organic solvents. We can obtain the longer length of silicon nanowires by increasing the etching time. The sensitivity of organic solvents will be increased depending on the length of silicon nanowires. We choose n-pentane, n-Hexane, methanol, ethanol and acetone as the organic solvents and report the reactivity between that and silicon nanowires. n-Pentane and n-Hexane is an non-polar solvent. There are hydrogen bonds between alcohol molecules causing by the OH functional group and carbonyl group was contained in acetone molecule. Both of these solvents are to be provided with polar. We can obtain the results in good reactivity and sensitivity of acetone which is containing carbonyl group. We compare n-type and p-type sensing result, n-type’s resistance are dropping and p-type’s resistance are rising; To discuss the sensing principle and rising sensing effect via P+ and N+ substrate. On sensing initial stage, we can be obtained by Elovich function to find they are linear, and it means when the current are small, the sensitivity are good.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 5 2.1 有機氣體感測儀器原理 5 2.1.1火焰游離式偵測器(Flame Ionization Detector, FID) 5 2.1.2光游離式偵測器(Photo Ionization Detector, PID) 6 2.1.3電子捕集式偵測器(Electron Capture Detector) 6 2.1.4熱傳導式偵測器(Thermal Conductivity Detector) 7 2.1.5觸媒燃燒式感測器(Catalytic Combustion Detector) 7 2.1.6 半導體式感測器(Semi-Conductive Detector) 8 2.2 有機氣體感測器研究近況 10 2.2.1 高分子材料表面電漿氣體感測器 10 2.2.2 多孔矽結構( porous silicon)感測器 13 2.2.3 氧化鋅奈米線 17 2.2.4 矽奈米線 19 2.3 矽奈米線之製備方式 22 2.3.1 氣-液-固成長機制 22 2.3.2 乾蝕刻 24 2.3.3 金屬輔助無電蝕刻 26 2.4 常見有機氣體種類與特性 30 第三章 實驗方法與步驟 33 3.1 實驗流程與規劃 33 3.2 試片準備 34 3.2.1 準備與清洗試片 35 3.2.2 調製蝕刻溶液與蝕刻 35 3.2.3 奈米線表面形貌分析 36 3.2.4 電極製作 36 3.3 感測實驗方法 37 3.3.1 實驗步驟 37 3.3.2 感測參數 38 3.4 使用儀器與設備 41 3.4.1 掃描式電子顯微鏡 41 3.4.2 數位萬用電錶 41 3.4.3 蒸鍍金屬沉積製程 41 第四章 結果與討論 43 4.1 不同時間對矽奈米線形貌的影響 43 4.2 不同種類氣體對矽奈米線的影響 45 4.3 單一線長矽奈米線對不同濃度氣體的感測特性 50 4.4 相同種類之有機溶劑氣體感測性質比較 52 4.5 反覆測試 55 4.6 N型矽奈米線感測 57 4.7 高摻雜試片之感測 59 4.8 反應時間 62 4.9 不理想之因素 64 第五章 結論 65 參考文獻 67

    【1】Y. Gong, R. Kishi, S. Kasai, Y. Katakura, K. Fujiwara, T. Umemura, T. Kondo, T. Sato, F. Sata, E. Tsukishima, S. Tozaki, T. Kawai, Y. Miyama, Visual dysfunction in workers exposed to a mixture of organic solvents, Neuro Toxicology 24, 703-710, 2003.
    【2】M. Pitarque, A. Vaglenov, M. Nosko, A. Hirvonen, H. Norppa, A. Creus, R. Marcos, Evaluation of DNA damage by the comet assay in shoe workers exposed to toluene and other organic solvents, Mutation Research 441, 115–127,1999.
    【3】http://www2.thu.edu.tw/~thugo/chinese/06_environment/06_1list.php .
    【4】X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, S.T. Lee, Silicon nanowires as chemical sensors, Chemical Physics Letters 369, 220–224, 2003.
    【5】J. P. Badilla, D. C. Rojas, V. Lo´ pez, B. D. Fahlman, A.Ramirez-Porras, Development of an organic vapor sensor based on functionalized porous silicon, Phys. Status Solidi A 208, 6, 1458–1461 , 2011.
    【6】林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料第157期,163-169 ,2000。
    【7】E. Galeazzo, H. E. M. Peres, G. Santos, N. Peixoto, F. J. amirez-Fernandez, Gas sensitive porous silicon devices: responses to organic vapors, Sensors and Actuators B 93, 384–390, 2003.
    【8】S. J. Kim, S. H. Lee, C. J. Lee, Organic vapor sensing by current response of porous silicon layer, Journal of Physics D: Applied Physics 34, 3505–3509, 2001.

    【9】C. Baratto, G. Faglia, E. Comini, G. Sberveglieri, A. Taroni, V. L. Ferrara, L. Quercia, G. Di Francia, A novel porous silicon sensor for detection of sub-ppm NO2 concentrations, Sensors and Actuators B 77 , 62-66 , 2001.
    【10】D. Wang, H. Sun, A. Chen, S.H. Jang, A. K. Y. Jen, A. Szep, Chemiresistive response of silicon nanowires to trace vapor of nitro explosives, Nanoscale 4, 2628–2632, 2012.
    【11】Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky, Supersensitive detection of explosives by silicon nanowire arrays, Angewandte Chemie International Edition 49, 6830 –6835, 2010.
    【12】F. Patolsky, C. M. Lieber, Nanowire nanosensors, Materials Today 8, 20-28, 2005.
    【13】Y. S. Jung, W. C. Jung, H. L. Tuller, C. A. Ross, Nanowire Conductive Polymer Gas Sensor Patterned Using Self-Assembled Block Copolymer Lithography,Nano Lett 8, 3776–3780 ,2008.
    【14】Jiaqiang Xu, Qingyi Pan, Y. A. Shun, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sensors and Actuators B: Chemical 66 , 277–279,2000.
    【15】E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, S. H. Jeong, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation, Sensors and Actuators B:Chemical141, 239–243 , 2009.
    【16】N. H. Al-Hardan, M. J. Abdullah, A. A. Aziz, Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films, International Journal of Hydrogen Energy 35, 4428–4434, 2010.

    【17】L. Tang, Y. Li, K. Xu, X. Hou, Y. Lv, Sensitive and selective acetone sensor based on its cataluminescence from nano-La2O3 surface, Sensors and Actuators B 132, 243–249, 2008.
    【18】S. F. Bamsaoud, S.B. Rane, R. N. Karekar, R. C. Aiyer, Nano particulate SnO2 based resistive films as a hydrogen and acetone vapour sensor, Sensors and Actuators B 153, 382–391, 2011.
    【19】H. Huang, Y. C. Lee, O. K. Tan, W. Zhou, N. Peng, Q, Zhang, High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature, Nanotechnology 20, 115501, 2009.
    【20】B. Cao, J. Chen, X. Tang, W. Zhou, Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection, Journal of Materials Chemistry 19, 2323–2327, 2009.
    【21】李勝利,各類型偵測感應器簡介,勞工安全衛生簡訊,第76期,2006。
    【22】周瑞福,三聯科技,氣體感測原理與應用。
    (http://www.sanlien.com/ad/san_tech.nsf/foundationview/836522106181709A482577A5002C8968/$FILE/77-25-31.pdf)。
    【23】A. Abdelghani, J. M. Chovelon, N. Jaffrezic-Renault, C. Veilla, H. Gagnaire, Chemical vapour sensing by surface plasmon resonance optical fibre sensor coated with fluoropolymer, Analytica Chimica Acta 337 ,225-232 , 1997.
    【24】Y. C. Cheng, W. K. Su, C. M. Lee, L. B. Chang, J. H. Liou, J. M. Shen, T. W. Soong, Design and measurement of dielectric sensor based on surface plasmon excitation, Applied Surface Science 136 , 260–267, 1998.
    【25】Z. Jin, Y. Su, Y. Duan, Development of a polyaniline-based optical ammonia sensor, Sensors and Actuators B 72, 75-79 , 2001.

    【26】H. Hu, M. Trejo, M. E. Nicho, J. M. Saniger, A.Garcia-Valenzuela, Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films, Sensors and Actuators B 82, 14-23, 2002.
    【27】S. Sharma, C. Nirkhe, S. Pethkar, A. A. Athawale, Chloroform vapour sensor based on copper/polyaniline nanocomposite, Sensors and Actuators B 85, 131-136, 2002.
    【28】D.Nicolas-Debarnot, F. Poncin-Epaillard, Review: Polyaniline as a new sensitive layer for gas sensors, Analytica Chimica Acta, Vol. 475, No. 1-2, 1-15, 2003.
    【29】林瑤冷、陳子江、蘇文寬、王建鈞,丙酮及異丙醇蒸氣對聚苯胺薄膜激發表面電漿共振特性影響之研究,中正嶺學報,第三十三卷第二期,2006。
    【30】M. E. Nicho, M. Trejo, A. GarcõÂa-Valenzuela, J. M. Saniger, J. Palacios, H. Hu, Polyaniline composite coatings interrogated by a nulling optical-transmittance bridge for sensing low concentrations of ammonia gas, Sensors and Actuators B 76, 18-24 , 2001.
    【31】A. Irajizad, F. Rahimi, M. Chavoshi, M. M. Ahadian, Characterization of porous poly-silicon as a gas sensor, Sensor Actuators B 100, 341-346, 2004.
    【32】K. Watanabe, T. Okada, I. Choe, Y. Sato, Organic vapor sensitivity in a porous silicon device, Sensors and Actuators B 33 194-197, 1996.
    【33】C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, G. Di Francia, F. D. Filippo, V. L. Ferrara, L. Quercia, L. Lancellotti, Gas detection with a porous silicon based sensor,Sensors and Actuators B 65, 257–259, 2000.

    【34】T. Holec, T. Chvojka, I. Jelınek, J. Jindrich, I. Nemec, I. Pelant, J. Valenta, J. Dian, Determination of sensoric parameters of porous silicon in sensing of organic vapors, Materials Science and Engineering C 19, 251–254, 2002.
    【35】S. Ozdemir, J. L. Gole, The potential of porous silicon gas sensors,Current Opinion in Solid State and Materials Science 11, 92–100 , 2007.
    【36】G. G. Salgado, T. D. Becerril, H. J. Santiesteban, E.R. Andre´s, Porous silicon organic vapor sensor, Optical Materials 29, 151–55, 2006.
    【37】S. Dhanekar, S. S. Islam, T. Islam, A. K. Shukla, Harsh, Organic vapour sensing by porous silicon: influence of molecular kinetics in selectivity, Physica E: Low-dimensional Systems and Nanostructures, 42, 1648–1652, 2010.
    【38】M. Archer, M.Christophersen, P. M. Fauchet, Electrical porous silicon chemical sensor for detection of organic solvents, Sensors and Actuators B 106, 347–357, 2005.
    【39】Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, X. L. He and J. P. Li, C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Applied Physics Letters 84, 3654 – 3656, 2004.
    【40】H. Xu, X. Liu, D. Cui, M. Li, M. Jiang, A novel method for improving the performance of ZnO gas sensors, Sensors and Actuators B 114, 301–307,2006.
    【41】C. Xiangfeng , J. Dongli, A. B. Djurisic , Y. H. Leung, Gas-sensing properties of thick film based on ZnOnano-tetrapods, Chemical Physics Letters 401, 426–429, 2005.

    【42】S. J. Chang,T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin, B. R. Huang, Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption,Nanotechnology 7, 754 – 759, 2008.
    【43】X. He, C. Guo, Y. Liu, C. H. A. Tsang, D. D. D. Ma, R. Zhang, N. B. Wong, Z. Kang, S. T. Lee, Silicon nanowires for high-specificity and high-selectivity sensors under low-frequency scanning, Applied Physics Letters 98, 043108 - 043108-3, 2011.
    【44】D. Wang, H. Sun, A. Chen, S. H. Jang, A. K.Y. Jen, A. Szep, Chemiresistive response of silicon nanowires to trace vapor of nitro explosives, Nanoscale 4, 2628–2632, 2012.
    【45】Y. Paska, T. Stelzner, S. Christiansen, H. Haick, Enhanced Sensing of Nonpolar Volatile Organic Compounds by Silicon Nanowire Field Effect Transistors, American Chemical Society Nano 5, 5620–5626, 2011.
    【46】M. A. Ghiass, S. Armini, M. Carli, A. M. Caro, V. Cherman, J. Ogi, S. Oda, Z. Moktadir, Y. Tsuchiya, H. Mizuta, Temperature insensitive conductance detection with surface-functionalised silicon nanowire sensors, Microelectronic Engineering 88, 1753–1756, 2011.
    【47】B. Zheng, Y. Wu, P. Yang, J. Liu, Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys, Advanced Materials. 14, 122-124 , 2002.
    【48】K. Q. Peng, X. Wang, S. T. Lee, Gas sensing properties of single crystalline porous silicon nanowires, Applied Physics letters 95, 243112 , 2009.
    【49】Y. Wu, P. Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth, American Chemical Society 123, 3165-3166, 2001.
    【50】H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng, Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism, Chemical Physics Letters 323, 224–228, 2000.
    【51】S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes, Science 327, 185-187, 2010.
    【52】T. Toriyama, Y. Tanimoto, S. Sugiyama, Single crystal silicon nano-wire piezoresistors for mechanical sensors, Microelectromechanical System 11, 605 – 611, 2002.
    【53】C. Gao, Z. C. Xu, S. R. Deng, J. Wan, Y. Chen, R. Liu, E. Huq, X. P. Qu, Silicon nanowires by combined nanoimprint and angle deposition for gas sensing applications, Microelectronic Engineering 88, 2100–2104, 2011.
    【54】J. Wan, S. R. Deng, R. Yang, Z. Shu, B. R. Lu, S. Q. Xie, Y. Chen, E. Huq, R. Liu, X. P. Qu, Silicon nanowire sensor for gas detection fabricated by nanoimprint on SU8/SiO2/PMMA trilayer, Microelectronic Engineering 86, 1238–1242 , 2009.
    【55】Z. Huang, N. Geyer, P. Werner, J. d. Boor, U. Gösele, Metal-Assisted Chemical Etching of Silicon: A Review,Advanced Materials 23, 285–308, 2011.
    【56】W. F. Kuan, L. J. Chen, The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures, Nanotechnology 20, 035605, 2009.

    【57】B. Ozdemir, M. Kulakci, R. Turan, H. E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires, Nanotechnology 22, 155606 , 2011.
    【58】T. Qiu, X. L. Wu, J. C. Shen, P. C. T. Ha, P. K. Chu, Surface-enhanced Raman characteristics of Ag cap aggregates on silicon nanowire arrays, Nanotechnology 17, 5769–5772, 2006.
    【59】K. Peng, Y. Yan, S. Gao, J. Zhu, Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,Advanced Functional Materials 13, 127–132, 2003.
    【60】C. Chartier, S. Bastide, C. Levy-Clement, Metal-assisted chemical etching of silicon in HF–H2O2, ElectrochimicaActa 53, 5509–5516, 2008.
    【61】X. Li, P. W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Applied Physics Letters 77, 2572 – 2574, 2000.
    【62】J. Huang, S. Y. Chiam, H. H. Tan, S. Wang, W. K. Chim, Fabrication of Silicon Nanowires with Precise Diameter Control Using Metal Nanodot Arrays as a Hard Mask Blocking Material in Chemical Etching, Chemistry Materials 22, 4111–4116, 2010.
    【63】X. Li, Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics, Current Opinion in Solid State and Materials Science 16, 71–81, 2012.
    【64】Z. Huang, X. Zhang, M. Reiche, L. Liu, Woo Lee, T. Shimizu, S. Senz, U. Gosele, Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,NANO Letters 8,3046-3051, 2008.

    【65】Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo, Y. Shi, Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration, Nanoscale Research Letters 7, 633, 2012.
    【66】C. Y. Chen, D. H. Phan, C. C. Wong, T. J. Yen, Vertically-aligned of sub-millimeter ultralong Si nanowire arrays and its reduced phonon thermal conductivity, Journal of the electrochemical society 158, 302-306 , 2011.
    【67】行政院勞工委員會中區勞動檢查所
    (http://www.gilee.com.tw/oem/main.php?nLv0No=100)。
    【68】Health Canada
    (http://www.hc-sc.gc.ca/ewh-semt/pubs/air/office_building-immeubles_bureaux/organic-organiques-eng.php)
    【69】EUR-Lex
    (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32004L0042:EN:NOT)
    【70】USGS(http://toxics.usgs.gov/definitions/vocs.html)
    【71】I. Park, Z. Li, A. P. Pisano, R. S. Williams, Top-down fabricated silicon nanowire sensors for real-time chemical detection, Nanotechnology 21, 015501, 2010.
    【72】V. V. Chabukswar, S. Pethkar, A. A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor, Sensors and Actuators B 77 ,657-663 , 2001.

    【73】C. R. Field, H. J. In, N. J. Begue, P. E. Pehrsson, Vapor Detection Performance of Vertically Aligned, Ordered Arrays of Silicon Nanowires with a Porous Electrode, American Chemical 83, 4724–4728, 2011.
    【74】C. Aharoni, F.C. Tompkins, Kinetics of adsorption and desorption and the Elovich equation, Adv. Catal. 21,1, 1970.
    【75】Q. Zhou , R. D. Gould, A study of the response rate to nitrogen dioxide exposure in metal phthalocyanine thin film sensors, Thin Solid Films 317 , 436–439,1998.

    QR CODE