簡易檢索 / 詳目顯示

研究生: 黃文程
Huang, Wen-Cheng
論文名稱: 生物活性導向分離鑑定山苦瓜緩解痤瘡丙酸桿菌誘導發炎反應之活性成分
Bioassay-guided isolation and identification of anti-inflammatory compounds from wild bitter melon leaf against Propionibacterium acnes
指導教授: 蔡帛蓉
Tsai, Po-Jung
學位類別: 博士
Doctor
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 178
中文關鍵詞: 發炎性痤瘡山苦瓜葫蘆烷型三萜類化合物酚類化合物抗發炎
英文關鍵詞: inflammatory acne, wild bitter melon, cucurbitane type triterpenoids, phenolics, anti-inflammatory
DOI URL: https://doi.org/10.6345/NTNU202204854
論文種類: 學術論文
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

尋常性痤瘡(acne vulgaris)俗稱青春痘,其致病因子複雜。痤瘡丙酸桿菌(Propionibacterium acnes)在痤瘡病灶中增殖並活化角質與皮脂腺細胞等釋出過量的促發炎介質(例如interleukin (IL)-8、tumor necrosis factor (TNF)-α或IL-1β),是發炎性痤瘡(inflammatory acne)的主要致病因子之一。山苦瓜(Momordica charantia Linn. var. abbreviata Ser.)為台灣坊間常見的一種具醫藥用途的蔬菜。
本研究以P. acnes刺激人類單核球THP-1細胞作為生物活性導向方法,探討山苦瓜中具抑制P. acnes誘導發炎之活性物質,並釐清該活性成分的作用機轉。另外也分析存在於山苦瓜葉甲醇萃取物己烷層的活性物質和存在於苦瓜種子之癸酸(capric acid)對於P. acnes誘導發炎反應的影響。
實驗結果發現山苦瓜葉乙醇/乙酸乙酯萃取物有效抑制P. acnes誘導發炎反應,此萃取物含有多酚類與三萜類化合物。利用液相層析或管柱層析等方法分離並鑑定其組成分,包括酚類化合物(gallic, chlorogenic, caffeic, ferulic, and cinnamic acids, myricetin, quercetin, luteolin, apigenin, and thymol)與葫蘆烷型三萜類化合物(5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol 和3β,7β,25-trihydroxycucurbita-5,23-dien-19-al)。利用GC/MS分析比對發現於山苦瓜葉甲醇萃取物己烷層的活性成分為β-ionone。
山苦瓜葉萃取物之酚類化合物、三萜類化合物、β-ionone與capric acid皆能有效降低促發炎細胞激素生成。這些化合物(如山苦瓜葉萃取物、三萜類化合物與capric acid)可經由抑制mitogen-activated protein kinases (MAPKs)或nuclear factor-kappa B (NF-κB)的活化作用、抑制促發炎細胞激素mRNA表現,因而抑制P. acnes誘導的發炎介質釋出。而葫蘆烷型三萜類化合物和β-ionone另可透過抑制MyD88、caspase-1等訊息傳遞途徑達到降低P. acnes引起之發炎反應。
以P. acnes注射小鼠耳朵誘發腫脹模式的結果顯示,山苦瓜葉乙醇/乙酸乙酯萃取物、葫蘆烷型三萜類化合物、β-ionone與capric acid均能有效降低免疫細胞浸潤現象、緩解耳朵發炎腫脹。除此之外,山苦瓜葉乙醇/乙酸乙酯萃取物、葫蘆烷型三萜類化合物和β-ionone可顯著減少小鼠耳朵發炎病灶IL-1β的生成,而capric acid亦可降低小鼠耳朵P. acnes活菌生長。
綜合上述結果,本研究推論山苦瓜葉萃取物和其活性組成分具有緩解發炎性痤瘡發炎之應用潛力。

Acne vulgaris, the medical term for common acne, is the most common skin disease with multiple pathogenic factors. Propionibacterium acnes is a key pathogen involved in acne inflammation by activating inflammatory cells, keratinocytes and sebocytes to secrete pro-inflammatory cytokines such as interleukin (IL)-8, IL-1β, and tumor necrosis factor (TNF)-α.
Wild bitter melon (WBM, Momordica charantia L. var. abbreviate Seringe), is consumed as both a vegetable and as folk medicine in Taiwan. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using P. acnes-stimulated human monocytic THP-1 cells in vitro. The inhibitory activity and action mechanism of ethanol/ethyl acetate extract of WBM leaf on P. acnes-induced inflammatory responses were examined. Secondly, the effects of the bioactive components in the hexane layer of methanolic extract from WBM leaf and capric acid (present in seeds of bitter melon) on P. acnes-induced inflammatory responses were also investigated.
Our results showed that ethanol/ethyl acetate extract significantly suppressed P. acnes-induced cytokine releases. The bioactive compounds of ethanol/ethyl acetate extract were identified as phenolics (gallic, chlorogenic, caffeic, ferulic, and cinnamic acids, myricetin, quercetin, luteolin, apigenin, and thymol) and cucurbitane type triterpenoids (5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al) by using a column chromatography method. In addition, β-ionone was found in hexane layer of methanolic extract, and measured by GC/MS.

These ten phenolics, two cucurbitane type triterpenoids, β-ionone, and capric acid effectively inhibited P. acnes-induced pro-inflammatory cytokine production or mRNA level, such as IL-8, TNF-α or IL-1β. Some of the above compounds (including extract of WBM leaf, cucurbitane type triterpenoid and capric acid) inhibited the activations of mitogen-activated protein kinases (MAPKs) or nuclear factor-kappa B (NF-κB) in vitro, these actions may partially account for their inhibitory effect on cytokine production. In addition, both cucurbitane type triterpenoids and β-ionone also suppressed MyD88 and caspase-1 signaling.
Ethanol/ethyl acetate extract, two cucurbitane type triterpenoids, β-ionone, and capric acid significantly attenuated P. acnes-induced ear swelling in mice along with microabscess. Treatments of ethanol/ethyl acetate extract, two cucurbitane type triterpenoids and β-ionone significantly decreased the migration of neutrophils and IL-1β+ populations in vivo. Capric acid exhibited anti-microbial activity against P. acnes in vitro and in vivo.
Our results suggested that WBM leaf extract and its bioactive components can be potential therapeutic agents against P. acnes-induced skin inflammation.

中文摘要 I 英文摘要 III 縮寫對照表 V 總目錄 VI 圖目錄 XI 表目錄 XV 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 2 壹、痤瘡的成因 2 貳、痤瘡丙酸桿菌誘導發炎反應 6 (一) TLRs (toll-like receptors; TLRs)簡介 6 (二) TLRs的信息傳遞途徑 8 (三) 痤瘡丙酸桿菌之發炎機轉 9 叁、痤瘡的藥物治療 12 肆、實驗材料簡介 14 (一) 苦瓜 14 (二) 多酚類化合物 20 (三) 中鏈脂肪酸 25 第三節 研究目的與實驗假說 27 壹、研究目的 27 貳、實驗假說 27 叁、實驗設計 27 (一) 山苦瓜葉萃取物對痤瘡丙酸桿菌誘導發炎之影響 27 (二) 山苦瓜葉中活性成分之純化分離與結構鑑定 27 (三) 活性成分對痤瘡丙酸桿菌誘導發炎之影響 28 (四) 癸酸對痤痤瘡丙酸桿菌誘導發炎之影響 28 第二章 材料與方法 29 第一節 研究材料 29 壹、實驗樣品與實驗耗材 29 (一) 山苦瓜葉 29 (二) 萃取溶劑與耗材 29 (三) 總多酚萃取物樣品製備 30 (四) 山苦瓜葉中三萜類化合物之分離鑑定 32 貳、實驗細胞株與實驗菌株 42 叁、實驗藥品與試劑配方 43 (一) 培養基與相關耗材 43 (二) 實驗藥品 44 (三) 實驗試劑配方 45 (四) 試劑套組 50 (五) 一級抗體 50 (六) 二級抗體 51 (七) Primer 序列 51 (八) Flow cytometry 抗體 52 肆、儀器用具 52 第二節 研究方法 53 (一) 細胞培養 53 (二) 細菌培養 55 (三) 抑菌實驗 56 (四) 細胞存活率檢測 57 (五) 抗發炎指標評估 57 (六) 西方墨點法(Western blotting) 61 (七) 轉錄因子NF-κB活性分析 64 (八) 動物實驗 66 (九) 統計分析 70 第三章 山苦瓜葉萃取物之抗發炎作用 71 第一節 前言 71 壹、實驗架構 72 第二節 材料與方法 73 壹、實驗材料 73 貳、實驗方法 73 第三節 結果與討論 73 壹、總多酚萃取物成分分析 73 (一) 總多酚萃取萃取物回收率 73 (二) 酚酸化合物分析 73 (三) 總三萜類化合物含量 73 貳、總多酚萃取物之抗發炎活性評估 75 (一) In vitro模式:P. acnes-induced THP-1 cells 75 (二) In vivo模式:P. acnes-stimulated mice ear edema 91 叁、討論 96 第四章 山苦瓜葉中三萜類化合物之抗發炎功效 100 第一節 前言 100 第二節 材料與方法 101 壹、實驗材料 101 貳、實驗方法 101 叁、實驗架構 101 第三節 結果與討論 102 壹、山苦瓜葉中三萜類化合物之抗發炎活性評估 102 (一) In vitro模式:P. acnes-induced THP-1 cells 102 (二) In vivo模式:P. acnes-stimulated mice ear edema 113 貳、討論 118 第五章 探討山苦瓜葉甲醇萃取物已烷層之活性成分 121 第一節 前言 121 第二節 材料與方法 122 壹、實驗材料 122 貳、實驗方法 122 叁、實驗架構 122 第三節 結果與討論 123 壹、β-ionone和dihydroactinidiolide之活性評估 123 (一) In vitro模式:P. acnes-induced THP-1 cell 123 (二) In vivo模式:P. acnes-stimulated mice ear edema 123 貳、β-ionone對IL-1β生成之影響 126 (一) In vivo模式:P. acnes-stimulated mice ear edema 126 (二) In vitro模式:P. acnes-induced THP-1 cell 126 叁、討論 129 第六章 癸酸與月桂酸(苦瓜種子油脂組成分)之活性評估 130 第一節 前言 130 第二節 材料與方法 131 壹、實驗材料 131 貳、實驗方法 131 叁、實驗架構 131 第三節 結果與討論 132 壹、Capric acid和lauric acid對痤瘡丙酸桿菌生長之影響 132 貳、Capric acid和lauric acid之抗發炎活性評估 132 (一) In vitro模式:P. acnes-induced SZ-95/THP-1 cells 132 (二) In vivo模式:P. acnes-stimulated mice ear edema 144 叁、討論 146 第七章 綜合討論 149 第八章 參考文獻 153 附錄 171 一、山苦瓜葉中三萜類化合物之光譜圖 171 二、山苦瓜葉甲醇萃取物已烷層之成分分析 177

全中和 (2007)。藥食兩用的東方蔬菜-苦瓜。科學發展,418,10-13。

連聰蓉 (2010)。探討香料萃取物抑制痤瘡丙酸桿菌生長與抗發炎之作用與機轉。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。

黃鈺涵 (2013)。中鏈脂肪酸對痤瘡丙酸桿菌誘導發炎反應之影響。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。

李宥苡 (2012)。山苦瓜萃取物暨其區分物對於痤瘡丙酸桿菌誘導發炎反應的影響。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。

黃育亭 (2011)。山苦瓜萃取物抑制黑色素生成及抗光老化效應的評估。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。

徐 瑨 (2011)。自山苦瓜單離植物雌激素及其化學鑑定與生物活性探討。國立臺灣大學生化科技學系博士論文。

Abe, S., Maruyama, N., Hayama, K., Ishibashi, H., Inoue, S., Oshima, H., & Yamaguchi, H. (2003). Suppression of tumor necrosis factor-alpha-induced neutrophil adherence responses by essential oils. Mediators of inflammation,12(6), 323-328.

Ahmad, Z., Zamhuri, K. F., Yaacob, A., Siong, C. H., Selvarajah, M., Ismail, A., & Hakim, M. N. (2012). In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules, 17(8), 9631-9640.

Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783-801.

Alestas, T., Ganceviciene, R., Fimmel, S., Müller-Decker, K., & Zouboulis, C. C. (2006). Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. Journal of Molecular Medicine, 84(1), 75-87.

Arancibia, S. A., Beltrán, C. J., Aguirre, I. M., Silva, P., Peralta, A. L., Malinarich, F., & Hermoso, M. A. (2007). Toll-like receptors are key participants in innate immune responses. Biological research, 40(2), 97-112.

Bach, A. C., & Babayan, V. K. (1982). Medium-chain triglycerides: an update.The American Journal of Clinical Nutrition, 36(5), 950-962.

Bano, F., Akthar, N., & Naz, H. (2011). Effect of the aqueous extract of Momordica charantia on body weight of rats. J Basic Appl Sci, 7(1), 1-5.

Barnes, P. J. (1997). Nuclear factor-kB. Int J Biochem Cell Biol, 29(6), 867-870.

Batovska, D. I., Todorova, T., Tsvetkova, V., & Najdenski, H. M. (2009). Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships. Polish Journal of Microbiology,58(1), 43-47.

Bauernfeind, F. G., Horvath, G., Stutz, A., Alnemri, E. S., MacDonald, K., Speert, D., Fernandes-Alnemri, T., Wu, J., Monks, B. G., Fitzgerald, K. A., & Hornung, V. (2009). Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. The Journal of Immunology, 183(2), 787-791.

Beutler, B., Hoebe, K., Du, X., & Ulevitch, R. J. (2003). How we detect microbes and respond to them: the Toll-like receptors and their transducers.Journal of leukocyte biology, 74(4), 479-485.

Bojar, R. A. & Holland, K. T. (2004). Acne and Propionibacterium acnes.Clinics in dermatology, 22(5), 375-379.

Brand, C., Townley, S. L., Finlay-Jones, J. J., & Hart, P. H. (2002). Tea tree oil reduces histamine-induced oedema in murine ears. Inflammation Research,51(6), 283-289.

Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews, 56(11), 317-333.

Chahil, T. J., & Ginsberg, H. N. (2006). Diabetic dyslipidemia. Endocrinology and metabolism clinics of North America, 35(3), 491-510.

Chanda, R., Poornima, T., & Vikas, S. (2013). Acne and its Treatment Lines, International Journal of Research in Pharmaceutical and Biosciences, 3(1), 1-16.

Chang, C. I., Chou, C. H., Liao, M. H., Chen, T. M., Cheng, C. H., Anggriani, R., Tsai, C. P., Tseng, H. I., & Cheng, H. L. (2015). Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin-resistant cells. Journal of Functional Foods, 13, 214-224.

Chaturvedi, P., George, S., Milinganyo, M., & Tripathi, Y. B. (2004). Effect of Momordica charantia on lipid profile and oral glucose tolerance in diabetic rats.Phytotherapy Research, 18(11), 954-956.

Chen, J. C., Liu, W. Q., Lu, L., Qiu, M. H., Zheng, Y. T., Yang, L. M., Zhang, X. M., Zhou, L., & Li, Z. R. (2009). Kuguacins F–S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry, 70(1), 133-140.

Chen, Q., Koga, T., Uchi, H., Hara, H., Terao, H., Moroi, Y., Urabe, K., & Furue, M. (2002). Propionibacterium acnes-induced IL-8 production may be mediated by NF-κB activation in human monocytes. Journal of dermatological science,29(2), 97-103.

Cheng, H. L., Kuo, C. Y., Liao, Y. W., & Lin, C. C. (2012). EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNF-α-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner. European journal of pharmacology, 689(1), 241-248.

Cheng, N., Ren, N., Gao, H., Lei, X., Zheng, J., & Cao, W. (2013). Antioxidant and hepatoprotective effects of Schisandra chinensis pollen extract on CCl 4-induced acute liver damage in mice. Food and Chemical Toxicology, 55, 234-240.

Choi, J. S., Kim, H. Y., Seo, W. T., Lee, J. H., & Cho, K. M. (2012). Roasting enhances antioxidant effect of bitter melon (Momordica charantia L.) increasing in flavan-3-ol and phenolic acid contents. Food Science and Biotechnology,21(1), 19-26.

Chou, Y. C., Sheu, J. R., Chung, C. L., Chen, C. Y., Lin, F. L., Hsu, M. J., Kuo, Y. H., & Hsiao, G. (2010). Nuclear-targeted inhibition of NF-κB on MMP-9 production by N-2-(4-bromophenyl) ethyl caffeamide in human monocytic cells. Chemico-biological interactions, 184(3), 403-412.

Chuang, C. Y., Hsu, C., Chao, C. Y., Wein, Y. S., Kuo, Y. H., & Huang, C. J. (2006). Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.). Journal of biomedical science, 13(6), 763-772.

Ciou, S. Y., Hsu, C. C., Kuo, Y. H., & Chao, C. Y. (2014). Effect of wild bitter gourd treatment on inflammatory responses in BALB/c mice with sepsis.BioMedicine, 3(4), 1-7.

Cohen, M., Meisser, A., Haenggeli, L., & Bischof, P. (2006). Involvement of MAPK pathway in TNF-α-induced MMP-9 expression in human trophoblastic cells. Molecular human reproduction, 12(4), 225-232.

Contassot, E., & French, L. E. (2014). New insights into acne pathogenesis: Propionibacterium acnes activates the inflammasome. Journal of Investigative Dermatology, 134(2), 310-313.

Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCORD, J. M., & Harman, D. (1987). Oxygen radicals and human disease. Annals of internal medicine, 107(4), 526-545.

Delclaux, C., Delacourt, C., d'Ortho, M. P., Boyer, V., Lafuma, C., & Harf, A. (1996). Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. American journal of respiratory cell and molecular biology, 14(3), 288-295.

Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied microbiology and biotechnology, 85(6), 1629-1642.

Desbois, A. P., & Lawlor, K. C. (2013). Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Marine drugs, 11(11), 4544-4557.

Eichenfield, L. F., Fowler Jr, J. F., Fried, R. G., Friedlander, S. F., Levy, M. L., & Webster, G. F. (2010). Perspectives on therapeutic options for acne: an update. In Seminars in cutaneous medicine and surgery, 29(2), 13-16.

Fang, E. F., & Ng, T. B. (2011). Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties. Current molecular medicine, 11(5), 417-436.

Fatope, M. O., Takeda, Y., Yamashita, H., Okabe, H., & Yamauchi, T. (1990). New cucurbitane triterpenoids from Momordica charantia. Journal of Natural products, 53(6), 1491-1497.

Feghali, C. A., & Wright, T. M. (1997). Cytokines in acute and chronic inflammation. Front Biosci, 2(1), d12-d26.

Flamini, G., Cioni, P. L., & Morelli, I. (2003). Volatiles from leaves, fruits, and virgin oil from Olea europaea Cv. Olivastra Seggianese from Italy. Journal of agricultural and food chemistry, 51(5), 1382-1386.

Garfinkel, M., Lee, S., Opara, E. C., & Akwari, O. E. (1992). Insulinotropic potency of lauric acid: A metabolic rationale for medium chain fatty acids (MCF) in TPN formulation. Journal of Surgical Research, 52(4), 328-333.

Geng, S., Zhu, W., Xie, C., Li, X., Wu, J., Liang, Z., Xie, W., Zhu, J., Huang, C., Zhu, M., Wu, R., & Zhong, C. (2015). Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice. European journal of nutrition, 1-10.

Ghosh, D. (2014). Does Bitter Melon (Momordica charantia) have Antibacterial Property?. Journal of Food Processing and Technology, 5(7).

Gollnick, H., Cunliffe, W., Berson, D., Dreno, B., Finlay, A., Leyden, J. J., Shalita, A.R., & Thiboutot, D. (2003). Management of acne: a report from a Global Alliance to Improve Outcomes in Acne. Journal of the American Academy of Dermatology,49(1), S1-S37.

Grange, P. A., Raingeaud, J., Calvez, V., & Dupin, N. (2009). Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-κB and MAPK pathways. Journal of dermatological science,56(2), 106-112.

Harborne, J. B. (1989). General procedures and measurement of total phenolics. Methods in plant biochemistry, 1, 1-28.

Harinantenaina, L., Tanaka, M., Takaoka, S., Oda, M., Mogami, O., Uchida, M., & Asakawa, Y. (2006). Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chemical and Pharmaceutical Bulletin, 54(7), 1017-1021.

Hoch, R. C., Schraufstätter, I. U., & Cochrane, C. G. (1996). In vivo, in vitro, and molecular aspects of interleukin-8 and the interleukin-8 receptors. Journal of Laboratory and Clinical Medicine, 128(2), 134-145.

Holland, D. B., Cunliffe, W. J., & Norris, J. F. (1998). Differential response of sebaceous glands to exogenous testosterone. British Journal of Dermatology, 139(1), 102-103.

Hollman, P. H., & Katan, M. B. (1999). Dietary flavonoids: intake, health effects and bioavailability. Food and Chemical Toxicology, 37(9), 937-942.

Horax, R., Hettiarachchy, N., & Chen, P. (2010). Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe). Journal of agricultural and food chemistry, 58(7), 4428-4433.

Horax, R., Hettiarachchy, N., & Islam, S. (2005). Total phenolic contents and phenolic acid constituents in 4 varieties of bitter melons (Momordica charantia) and antioxidant activities of their extracts. Journal of food science, 70(4), C275-C280.

Hsiang, C. Y., Hseu, Y. C., Chang, Y. C., Kumar, K. S., Ho, T. Y., & Yang, H. L. (2013). Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear factor-κB transgenic mice as evaluated by in vivo bioluminescence imaging. Food chemistry, 136(2), 426-434.

Hsu, C. L., Fang, S. C., Liu, C. W., & Chen, Y. F. (2013). Inhibitory effects of new varieties of bitter melon on lipopolysaccharide-stimulated inflammatory response in RAW 264.7 cells. Journal of Functional Foods, 5(4), 1829-1837.

Hsu, C., Hsieh, C. L., Kuo, Y. H., & Huang, C. J. (2011). Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia. Journal of agricultural and food chemistry, 59(9), 4553-4561.

Hsu, C., Tsai, T. H., Li, Y. Y., Wu, W. H., Huang, C. J., & Tsai, P. J. (2012). Wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) extract and its bioactive components suppress Propionibacterium acnes-induced inflammation. Food chemistry, 135(3), 976-984.

Huang, W. C., Tsai, T. H., Huang, C. J., Li, Y. Y., Chyuan, J. H., Chuang, L. T., & Tsai, P. J. (2015). Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food & function, 6(8), 2550-2560.

Huang, Y. C., Yang, C. H., Li, T. T., Zouboulis, C. C., & Hsu, H. C. (2015). Cell-free extracts of Propionibacterium acnes stimulate cytokine production through activation of p38 MAPK and Toll-like receptor in SZ95 sebocytes. Life sciences, 139, 123-131.

Hussein, W. M., Liu, T. Y., Skwarczynski, M., & Toth, I. (2014). Toll-like receptor agonists: a patent review (2011-2013). Expert opinion on therapeutic patents, 24(4), 453-470.

Hwang, S. J., Kim, Y. W., Park, Y., Lee, H. J., & Kim, K. W. (2014). Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation Research, 63(1), 81-90.

Ingham, E., Eady, E. A., Goodwin, C. E., Cove, J. H., & Cunliffe, W.J. (1992). Pro-inflammatory levels of interleukin-1 alpha-like bioactivity are present in the majority of open comedones in acne vulgaris. Journal of Investigative Dermatology, 98(6), 895-901.

Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. science, 327(5963), 291-295.

Jalian, H. R., Liu, P. T., Kanchanapoomi, M., Phan, J. N., Legaspi, A. J., & Kim, J. (2008). All-trans retinoic acid shifts Propionibacterium acnes-induced matrix degradation expression profile toward matrix preservation in human monocytes. Journal of Investigative Dermatology, 128(12), 2777-2782.

Jappe, U. (2003). Pathological mechanisms of acne with special emphasis on Propionibacterium acnes and related therapy. Acta dermato-venereologica,83(4), 241.

Jayaraman, P., Sakharkar, M. K., Lim, C. S., Tang, T. H., & Sakharkar, K. R. (2010). Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. International journal of biological sciences, 6(6), 556.

Johnson, J. L., Dia, V. P., Wallig, M., & de Mejia, E. G. (2015). Luteolin and Gemcitabine Protect Against Pancreatic Cancer in an Orthotopic Mouse Model.Pancreas, 44(1), 144-151.

Jugeau, S., Tenaud, I., Knol, A. C., Jarrousse, V., Quereux, G., Khammari, A., & Dreno, B. (2005). Induction of toll‐like receptors by Propionibacterium acnes.British Journal of Dermatology, 153(6), 1105-1113.

Kabara, J. J., Swieczkowski, D. M., Conley, A. J., & Truant, J. P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrobial agents and chemotherapy, 2(1), 23-28.

Kang, C. H., Jayasooriya, R. G. P. T., Choi, Y. H., Moon, S. K., Kim, W. J., & Kim, G. Y. (2013). β-Ionone attenuates LPS-induced pro-inflammatory mediators such as NO, PGE 2 and TNF-α in BV2 microglial cells via suppression of the NF-κB and MAPK pathway. Toxicology in Vitro, 27(2), 782-787.

Kang, S., Cho, S., Chung, J. H., Hammerberg, C., Fisher, G. J., & Voorhees, J. J. (2005). Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor-κB and activator protein-1 in inflammatory acne lesions in vivo. The American journal of pathology, 166(6), 1691-1699.

Karmarkar, D., & Rock, K. L. (2013). Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response. Immunology,140(4), 483-492.

Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology, 11(5), 373-384.

Kesh, S. B., Sikder, K., Manna, K., Das, D. K., Khan, A., Das, N., & Dey, S. (2013). Promising role of ferulic acid, atorvastatin and their combination in ameliorating high fat diet-induced stress in mice. Life sciences, 92(17), 938-949.

Khan, N., & Mukhtar, H. (2015). Dietary agents for prevention and treatment of lung cancer. Cancer letters, 359(2), 155-164.

Khan, R. A., Khan, M. R., Sahreen, S., & Ahmed, M. (2012). Evaluation of phenolic contents and antioxidant activity of various solvent extracts of Sonchus asper (L.) Hill. Chem Cent J, 6(1), 12.

Kim, J. (2005). Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology, 211(3), 193-198.

Kim, J., Ochoa, M. T., Krutzik, S. R., Takeuchi, O., Uematsu, S., Legaspi, A. J., Brightbill, H. D., Holland, D., Cunliffe, W. J., Akira, S., Sieling, P. A., Godowski, P. J., & Modlin, R. L. (2002). Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. The Journal of Immunology, 169(3), 1535-1541.

Kim, K. H., Moon, E., Choi, S. U., Kim, S. Y., & Lee, K. R. (2013). Polyphenols from the bark of Rhus verniciflua and their biological evaluation on antitumor and anti-inflammatory activities. Phytochemistry, 92, 113-121.

King, A., & Young, G. (1999). Characteristics and occurrence of phenolic phytochemicals. Journal of the American Dietetic Association, 99(2), 213-218.

Kistowska, M., Gehrke, S., Jankovic, D., Kerl, K., Fettelschoss, A., Feldmeyer, L., Fenini, G., Kolios, A., Navarini, A., Ganceviciene, R., Schauber, J., Contassot, E. & French, L. E. (2014). IL-1β drives inflammatory responses to Propionibacterium acnes in vitro and in vivo. Journal of Investigative Dermatology, 134(3), 677-685.

Kopp, E., & Medzhitov, R. (2003). Recognition of microbial infection by Toll-like receptors. Current opinion in immunology, 15(4), 396-401.

Koreck, A., Pivarcsi, A., Dobozy, A., & Kemeny, L. (2003). The role of innate immunity in the pathogenesis of acne. Dermatology, 206(2), 96-105.

Kubola, J., & Siriamornpun, S. (2008). Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry, 110(4), 881-890.

Kumar, A., Takada, Y., Boriek, A. M., & Aggarwal, B. B. (2004). Nuclear factor-κB: its role in health and disease. Journal of Molecular Medicine, 82(7), 434-448.

Kumar, R., Balaji, S., Sripriya, R., Nithya, N., Uma, T. S., & Sehgal, P. K. (2010). In vitro evaluation of antioxidants of fruit extract of Momordica charantia L. on fibroblasts and keratinocytes. Journal of agricultural and food chemistry, 58(3), 1518-1522.

Kurokawa, I., Danby, F. W., Ju, Q., Wang, X., Xiang, L. F., Xia, L., Chen, W. C., Nagy, I., Picardo, M., Suh, D. H., Ganceviciene, R., Schagen, S., Tsatsou, F., & Zouboulis, C. C. (2009). New developments in our understanding of acne pathogenesis and treatment. Experimental dermatology, 18(10), 821-832.

Kwon, E. Y., Jung, U. J., Park, T., Yun, J. W., & Choi, M. S. (2015). Luteolin Attenuates Hepatic Steatosis and Insulin Resistance Through the Interplay Between the Liver and Adipose Tissue in Mice with Diet-Induced Obesity.Diabetes, 64(5), 1658-1669.

Lee, C. C., Avalos, A. M., & Ploegh, H. L. (2012). Accessory molecules for Toll-like receptors and their function. Nature Reviews Immunology, 12(3), 168-179.

Lee, W. R., Kim, K. H., An, H. J., Kim, J. Y., Chang, Y. C., Chung, H., Park, Y. Y., Lee, M. L., & Park, K. K. (2014). The Protective Effects of Melittin on Propionibacterium acnes–Induced Inflammatory Responses In Vitro and In Vivo. Journal of Investigative Dermatology, 134(7), 1922-1930.

Lertsatitthanakorn, P., Taweechaisupapong, S., Aromdee, C., & Khunkitti, W. (2006). In vitro bioactivities of essential oils used for acne control. International Journal of Aromatherapy, 16(1), 43-49.

Li, W. H., Zhang, L., Lyte, P., Rodriguez, K., Cavender, D., & Southall, M. D. (2015). p38 MAP Kinase Inhibition Reduces Propionibacterium acnes-Induced Inflammation in Vitro. Dermatology and therapy, 5(1), 53-66.

Liang, Y. C., Huang, Y. T., Tsai, S. H., Lin-Shiau, S. Y., Chen, C. F., & Lin, J. K. (1999). Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages.Carcinogenesis, 20(10), 1945-1952.

Lii, C. K., Chen, H. W., Yun, W. T., & Liu, K. L. (2009). Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) fruit extracts on inflammatory responses in RAW 264.7 macrophages. Journal of ethnopharmacology, 122(2), 227-233.

Lim, T. K. (2012). Momordica charantia. In Edible medicinal and non-medicinal plants (pp. 331-368). Springer Netherlands.
Liu, C. H., & Huang, H. Y. (2013). In vitro anti-propionibacterium activity by curcumin containing vesicle system. Chemical and Pharmaceutical Bulletin,61(4), 419-425.

Liu, C. H., Yen, M. H., Tsang, S. F., Gan, K. H., Hsu, H. Y., & Lin, C. N. (2010). Antioxidant triterpenoids from the stems of Momordica charantia. Food chemistry, 118(3), 751-756.

Liu, J. Q., Chen, J. C., Wang, C. F., & Qiu, M. H. (2009). New cucurbitane triterpenoids and steroidal glycoside from Momordica charantia. Molecules,14(12), 4804-4813.

Liu, K. Y., Hu, S., Chan, B. C., Wat, E. C., Lau, C., Hon, K. L., Fung, K. P., Leung, P. C., Hui, P. C., Lam, C. W., & Wong, C. K. (2013). Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan Cortex (Danpi) and gallic acid. Molecules, 18(3), 2483-2500.

Lucky, A. W., Biro, F. M., Simbartl, L. A., Morrison, J. A., & Sorg, N. W. (1997). Predictors of severity of acne vulgaris in young adolescent girls: results of a five-year longitudinal study. Journal of Pediatrics, 130(1), 30-39.

Mahmood, A., Raja, G. K., Mahmood, T., Gulfraz, M., & Khanum, A. (2012). Isolation and characterization of antimicrobial activity conferring component (s) from seeds of bitter gourd (Momordica charantia). J Med Plants Res, 6(4), 566-573.

Mariathasan, S., & Monack, D. M. (2007). Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nature Reviews Immunology, 7(1), 31-40.

Martinon, F., & Tschopp, J. (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell, 117(5), 561-574.

Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., & Janeway, C. A. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Molecular cell, 2(2), 253-258.

Min, Y. D., Choi, C. H., Bark, H., Son, H. Y., Park, H. H., Lee, S., Park, J.W., Park, E. K., Shin, H. I., & Kim, S. H. (2007). Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line.Inflammation Research, 56(5), 210-215.

Miniati, A., Weng, Z., Zhang, B., Therianou, A., Vasiadi, M., Nicolaidou, E., Stratigos, A. J., Antoniou, C., & Theoharides, T. C. (2014). Stimulated human melanocytes express and release interleukin‐8, which is inhibited by luteolin: relevance to early vitiligo.Clinical and experimental dermatology, 39(1), 54-57.

Moon, S. K., Cha, B. Y., & Kim, C. H. (2004). ERK1/2 mediates TNF‐α‐induced matrix metalloproteinase‐9 expression in human vascular smooth muscle cells via the regulation of NF‐κB and AP‐1: Involvement of the ras dependent pathway. Journal of cellular physiology, 198(3), 417-427.

Mooradian, A. D. (2009). Dyslipidemia in type 2 diabetes mellitus. Nature clinical practice endocrinology & metabolism, 5(3), 150-159.

Mulholland, D. A., Sewram, V., Osborne, R., Pegel, K. H., & Connolly, J. D. (1997). Cucurbitane triterpenoids from the leaves of Momordica foetida.Phytochemistry, 45(2), 391-395.

Nagy, I., Pivarcsi, A., Kis, K., Koreck, A., Bodai, L., McDowell, A., Seltmann, H., Patrick, S., Zouboulis, C. C., & Kemény, L. (2006). Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes and infection, 8(8), 2195-2205.

Nakatsuji, T., Kao, M. C., Fang, J. Y., Zouboulis, C. C., Zhang, L., Gallo, R. L., & Huang, C. M. (2009). Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. Journal of investigative dermatology, 129(10), 2480-2488.

Nerurkar, P. V., Lee, Y. K., & Nerurkar, V. R. (2009). Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes. BMC complementary and alternative medicine, 10, 34-34.

Nhiem, N. X., Yen, P. H., Ngan, N. T. T., Quang, T. H., Kiem, P. V., Minh, C. V., Tai, B. H., Cuong, N. X., Song, S. B., & Kim, Y. H. (2012). Inhibition of nuclear transcription factor-κB and activation of peroxisome proliferator-activated receptors in HepG2 cells by cucurbitane-type triterpene glycosides from Momordica charantia. Journal of medicinal food, 15(4), 369-377.

Norris, J.F., & Cunliffe, W. J. (1988). A histological and immunocytochemical study of early acne lesions. British Journal of Dermatology, 118(5), 651-659.

Olutunmbi, Y., Paley, K., & English, J. C. (2008). Adolescent female acne: etiology and management. Journal of pediatric and adolescent gynecology,21(4), 171-176.

Pan, M. H., Lai, C. S., Wang, Y. J., & Ho, C. T. (2006). Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochemical pharmacology, 72(10), 1293-1303.

Park, E. J., Kim, S. A., Choi, Y. M., Kwon, H. K., Shim, W., Lee, G., & Choi, S. (2011). Capric acid inhibits NO production and STAT3 activation during LPS-induced osteoclastogenesis. PloS one, 6(11), e27739.

Paul, A., & Raychaudhuri, S. S. (2010). Medicinal uses and molecular identification of two Momordica charantia varieties-a review. Electronic Journal of Biology, 6(2), 43-51.

Pawin, H., Beylot, C., Chivot, M., Faure, M., Florence, P. O. L. I., Revuz, J., & Dréno, B. (2004). Physiopathology of acne vulgaris: recent data, new understanding of the treatments. European Journal of Dermatology, 14(1), 4-12.

Pérez-Jiménez, J., Neveu, V., Vos, F., & Scalbert, A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition, 64, S112-S120.

Pitchakarn, P., Suzuki, S., Ogawa, K., Pompimon, W., Takahashi, S., Asamoto, M., Limtrakul, P., & Shirai, T. (2011). Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf. Cancer letters, 306(2), 142-150.

Pitchakarn, P., Suzuki, S., Ogawa, K., Pompimon, W., Takahashi, S., Asamoto, M., Limtrakul, P., & Shirai, T. (2012). Kuguacin J, a triterpeniod from Momordica charantia leaf, modulates the progression of androgen-independent human prostate cancer cell line, PC3. Food and Chemical Toxicology, 50(3), 840-847.

Pochi, P. E., & Strauss, J. S. (1988). Sebaceous gland activity in black skin. Dermatologic Clinics, 6(3) 349-351.

Popovich, D. G., Li, L., & Zhang, W. (2010). Bitter melon (Momordica charantia) triterpenoid extract reduces preadipocyte viability, lipid accumulation and adiponectin expression in 3T3-L1 cells. Food and Chemical Toxicology,48(6), 1619-1626.

Qin, M., Pirouz, A., Kim, M. H., Krutzik, S. R., Garbán, H. J., & Kim, J. (2014). Propionibacterium acnes induces IL-1β secretion via the NLRP3 inflammasome in human monocytes. Journal of Investigative Dermatology, 134(2), 381-388.

Ratib, A., Elkomy, M. H., Tawfic, S. O., Soliman, M. M., & Shaker, O. G. (2012). TLR-4 and its adaptor protein MyD88 in inflammatory and noninflammatory lesions of acne vulgaris. Journal of the Egyptian Women’s Dermatologic Society, 9(2), 102-107.

Reger, M. A., Henderson, S. T., Hale, C., Cholerton, B., Baker, L. D., Watson, G. S., Hyde, K., Chapman, D., & Craft, S. (2004). Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiology of aging, 25(3), 311-314.

Rezaeizadeh, A., Zuki, A. B. Z., Abdollahi, M., Goh, Y. M., Noordin, M. M., Hamid, M., & Azmi, T. I. (2013). Determination of antioxidant activity in methanolic and chloroformic extracts of Momordica charantia. African Journal of Biotechnology, 10(24), 4932-4940.

Rodriguez Vaquero, M. J., Aredes Fernandez, P. A., Manca de Nadra, M. C., & Strasser de Saad, A. M. (2010). Phenolic compound combinations on Escherichia coli viability in a meat system. Journal of agricultural and food chemistry, 58(10), 6048-6052.

Roffey, B. W., Atwal, A. S., Johns, T., & Kubow, S. (2007). Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells. Journal of ethnopharmacology, 112(1), 77-84.

Saavedra, M. J., Borges, A., Dias, C., Aires, A., Bennett, R. N., Rosa, E. S., & Simões, M. (2010). Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Medicinal Chemistry, 6(3), 174-183.

Santangelo, C., Varì, R., Scazzocchio, B., Di Benedetto, R., Filesi, C., & Masella, R. (2007). Polyphenols, intracellular signalling and inflammation. Annali-istituto superiore di sanita, 43(4), 394.

Sato, Y., Sasaki, N., Saito, M., Endo, N., Kugawa, F., & Ueno, A. (2015). Luteolin Attenuates Doxorubicin-Induced Cytotoxicity to MCF-7 Human Breast Cancer Cells. Biological and Pharmaceutical Bulletin, 38(5), 703-709.

Sawmiller, D., Li, S., Shahaduzzaman, M., Smith, A. J., Obregon, D., Giunta, B., Borlongan, C. V., Sanberg, P. R., & Tan, J. (2014). Luteolin Reduces Alzheimer’s Disease Pathologies Induced by Traumatic Brain Injury. International journal of molecular sciences,15(1), 895-904.

Seelinger, G., Merfort, I., & Schempp, C. M. (2008). Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta medica, 74(14), 1667-1677.

Sharma, R., Lall, N., & Kishore, N. (2015). Role of Protein Interleukin 8 (IL-8) in Human Life. In Biomedical Applications of Natural Proteins (pp. 89-100). Springer India.

Sommerburg, O., Langhans, C. D., Arnhold, J., Leichsenring, M., Salerno, C., Crifò, C., Hoffmann, G. F., Debatin, K. M., & Siems, W. G. (2003). β-Carotene cleavage products after oxidation mediated by hypochlorous acid-a model for neutrophil-derived degradation. Free Radical Biology and Medicine, 35(11), 1480-1490.

Spencer, J. P., Abd El Mohsen, M. M., Minihane, A. M., & Mathers, J. C. (2008). Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. British Journal of Nutrition, 99(01), 12-22.

Strauss, J. S., Krowchuk, D. P., Leyden, J. J., Lucky, A. W., Shalita, A. R., Siegfried, E. C., Thiboutot, D. M., Voorhees, A. S., Beutner, K. A., Sieck, C. K., & Bhushan, R. (2007). Guidelines of care for acne vulgaris management. Journal of the American Academy of Dermatology, 56(4), 651-663.

Subramanian, V., Venkatesan, B., Tumala, A., & Vellaichamy, E. (2014). Topical application of Gallic acid suppresses the 7, 12-DMBA/Croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food and Chemical Toxicology, 66, 44-55.

Sugisaki, H., Yamanaka, K., Kakeda, M., Kitagawa, H., Tanaka, K., Watanabe, K., Gabazza, E. C., Kurokawa, I., & Mizutani, H. (2009). Increased interferon-γ, interleukin-12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: Host response but not bacterial species is the determinant factor of the disease. Journal of dermatological science, 55(1), 47-52.

Tak, P. P., & Firestein, G. S. (2001). NF-κB: a key role in inflammatory diseases. J Clin Invest, 107(1), 7-11.

Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805-820.

Tanimura, N., & Miyake, K. (2015). Toll Like Receptors. In Glycoscience: Biology and Medicine (pp. 707-712). Springer Japan.

Thiboutot, D., Gilliland, K., Light, J., & Lookingbill, D. (1999). Androgen metabolism in sebaceous glands from subjects with and without acne. Archives of Dermatology,135(9), 1041-1045.

Tsai, H. H., Lee, W. R., Wang, P. H., Cheng, K. T., Chen, Y. C., & Shen, S. C. (2013). Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages. Journal of dermatological science, 69(2), 122-131.

Tsai, T. H., Huang, C. J., Wu, W. H., Huang, W. C., Chyuan, J. H., & Tsai, P. J. (2014). Antioxidant, cell-protective, and anti-melanogenic activities of leaf extracts from wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) cultivars. Botanical Studies, 55(1), 78.

Tsai, T. H., Tsai, T. H., Wu, W. H., Tseng, J. T. P., & Tsai, P. J. (2010). In vitro antimicrobial and anti-inflammatory effects of herbs against Propionibacterium acnes. Food Chemistry, 119(3), 964-968.

Tuong, W., Walker, L., & Sivamani, R. K. (2014). Polyphenols as novel treatment options for dermatological diseases: A systematic review of clinical trials. Journal of Dermatological Treatment, (0), 1-8.

Vowels, B. R., Yang, S., & Leyden, J. J. (1995). Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: implications for chronic inflammatory acne. Infection and immunity, 63(8), 3158-3165.

Wang, T., Xi, M., Guo, Q., Wang, L., & Shen, Z. (2015). Chemical components and antioxidant activity of volatile oil of a Compositae tea (Coreopsis tinctoria Nutt.) from Mt. Kunlun. Industrial Crops and Products, 67, 318-323.

Wenzel, S. E., Balzar, S., Cundall, M., & Chu, H. W. (2003). Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation, and wound repair.Journal of allergy and clinical immunology, 111(6), 1345-1352.

Williams, H. C., Dellavalle, R. P., & Garner, S. (2012). Acne vulgaris. The Lancet, 379(9813), 361-372.

Wu, S. J., & Ng, L. T. (2008). Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan.LWT-Food Science and Technology, 41(2), 323-330.

Wu, W. H., Lin, B. Y., Kuo, Y. H., & Huang, C. J. (2009). Triglycerides constituted of short and medium chain fatty acids and dicarboxylic acids in Momordica charantia, as well as capric acid, inhibit PGE 2 production in RAW264. 7 macrophages. Food chemistry, 117(2), 306-311.

Xia, E. Q., Deng, G. F., Guo, Y. J., & Li, H. B. (2010). Biological activities of polyphenols from grapes. International journal of molecular sciences, 11(2), 622-646.

Xiang, Z., Tang, C., Chen, G., & Shi, Z. (2000). Studied on corlorimetric determination of oleanolic acid in Chinese quince. Natural Product Research and Development, 13(4), 23-26.

Yang, C. S., Shin, D. M., & Jo, E. K. (2012). The role of NLR-related protein 3 inflammasome in host defense and inflammatory diseases. International neurourology journal, 16(1), 2-12.

Yang, W. S., Jeong, D., Yi, Y. S., Park, J. G., Seo, H., Moh, S. H., Hong, S., & Cho, J. Y. (2013). IRAK1/4-targeted anti-inflammatory action of caffeic acid.Mediators of inflammation, 2013.

Yu, Y., Zhang, X. H., Ebersole, B., Ribnicky, D., & Wang, Z. Q. (2013). Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Scientific reports, 3, 3142-3150.

Zaenglein, A. L., Graber, E. M., Thiboutot, D. M., & Strauss, J. S. (2008). Acne vulgaris and acneiform eruptions. Fitzpatrick’s dermatology in general medicine. 7th ed. New York: McGraw-Hill, 690-700.

Zhang, J., Huang, Y., Kikuchi, T., Tokuda, H., Suzuki, N., Inafuku, K. I., Miura, M., Motohashi, S., Suzuki, T., & Akihisa, T. (2012). Cucurbitane triterpenoids from the leaves of Momordica charantia, and their cancer chemopreventive effects and cytotoxicities.Chemistry & biodiversity, 9(2), 428-440.

Zhao, G. T., Liu, J. Q., Deng, Y. Y., Li, H. Z., Chen, J. C., Zhang, Z. R., Zhou, L., & Qiu, M. H. (2014). Cucurbitane-type triterpenoids from the stems and leaves of Momordica charantia. Fitoterapia, 95, 75-82.

Zhu, H., Liang, Q. H., Xiong, X. G., Chen, J., Wu, D., Wang, Y., Yang, B., Zhang, Y., Zhang, Y., & Huang, X. (2014). Anti-inflammatory effects of the bioactive compound ferulic acid contained in oldenlandia diffusa on collagen-induced arthritis in rats. Evidence-Based Complementary and Alternative Medicine, 2014.

Zouboulis, C. C., Seltmann, H., Neitzel, H., & Orfanos, C. E. (1999). Establishment and Characterization of an Immortalized Human Sebaceous Gland Cell Line (SZ95) 1. Journal of investigative dermatology, 113(6), 1011-1020.

無法下載圖示 本全文未授權公開
QR CODE