研究生: |
莊濬豪 Chuang, Chun-Hao |
---|---|
論文名稱: |
橢圓概念教學影片不同的呈現方式對學生的學習成效與認知負荷感受之影響研究 |
指導教授: |
左台益
Tso, Tai-Yih |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 教學影片 、手勢 、動態繪圖 、認知負荷 、APOS 、表徵 、概念心像 |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DM.003.2019.B01 |
論文種類: | 學術論文 |
相關次數: | 點閱:300 下載:37 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,網路上有大量的多媒體教學影片,數位學習(e-Learning)已逐漸成為重要的學習管道,綜觀過去的研究,多媒體學習認知理論與認知負荷理論廣泛應用於數位教材的設計上,然而教學者手勢與動畫在數位教材中所扮演的角色仍有待進一步探究,本研究以數學學科本質、科技特色、認知結構、研究工具這四個面向探討橢圓概念教學影片是否包含教學者手勢與/或動態繪圖對學生的學習成效與認知負荷感受的影響,並以學生特質的觀點進一步探討此影響是否因學生的學習準備度(高學習成就、低學習成就)或認知風格(視覺型、語文型、混和型)而有所不同。本研究採準實驗研究法,並由研究結果建立以下假說:一、教學者手勢對學習成效的影響與所學的內容或學生的學習準備度有關(如後測試題第3題、第4題)。二、動態繪圖有助於建立學生概念結構中的心智圖像,強化表徵之間的動態連結,並促進遷移題的表現(如後測試題第5-1題)。三、高學習成就的學生其認知負荷感受顯著低於低學習成就的學生。
中文參考文獻
Bruner, J. S. (1997). 教學論(邵瑞珍譯)。臺北:五南。
左台益、蔡志仁(2001)。高中生建構橢圓多重表徵之認知特性。科學教育學刊,9(3),281-297。
呂鳳琳(2010)。幾何證明不同文本呈現方式對學生認知負荷與閱讀理解影響之研究(未發表之碩士論文)國立臺灣師範大學,臺北。
閆東、高學明(2011)。數學表徵及其案例解析。中學數學月刊,3,9-11。
黃國禎、蘇俊銘、陳年興(2015)。數位學習導論與實務(第二版)。新北市:博碩。
楊湘琳(2011)。教學影片結合網路學習平台的數學補救教學成效(未發表之碩士論文)。國立臺灣師範大學,臺北。
英文參考文獻
Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2014). APOS theory: A framework for research and curriculum development in mathematics education. New York: Springer.
Chase,W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.
Childers, T. L., Houston, M. J., & Heckler, S. E. (1985). Measurement of individual differences in visual versus verbal information processing. Journal of Consumer Research, 12(2), 125-134.
Clark, R. C., & Mayer, R. E. (2008). e-Learning and the science of instruction. San Francisco: Pfeiffer.
Cooper, G., Tindall-Ford, S., Chandler, P., & Sweller, J. (2001). Learning by imagining. Journal of Experimental Psychology: Applied, 7, 68–82.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.
Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss & A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level (pp. 275-282). Dordrecht: Springer.
Duval, R. (1995). Geometrical Pictures: Kinds of Representation and Specific Processings. In R. Sutherland, J. Mason (Eds) Exploiting Mental Imagery with Computers in Mathematics Education (pp. 142-157). Berlin: Springer.
Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering education, 78(7), 674-681.
Geary, D. (2007). Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology. In J. S. Carlson, & J. R. Levin (Eds.), Psychological perspectives on contemporary educational issues (pp. 1–99). Greenwich, CT: Information Age Publishing.
Geary, D. (2008). An evolutionarily informed education science. Educational Psychologist, 43, 179–195.
Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics. The Journal of Mathematical Behavior, 17(2), 137-165.
Goldin, G. A., & Kaput, J. M. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 397-430). Hillsdale, NJ: Lawrence Erlbaum.
Heddens, J. W. (1986). Bridging the Gap Between the Concrete and the Abstract. Arithmetic Teacher, 33(6), 14-17.
Janvier, C. (1987). Representation and understanding: The notion of function as an example. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 67-71). Hillsdale, NJ: Lawrence Erlbaum.
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31.
Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner, & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 167–194). Hillsdale, NJ: Lawrence Erlbaum.
Leahy, W., & Sweller, J. (2011). Cognitive load theory, modality of presentation and the transient information effect. Applied Cognitive Psychology, 25(6), 943-951.
Lesh, R., Post, T., & Behr, M. (1987). Representations and Translations among Representations in Mathematics Learning and Problem Solving. In C. Janvier, (Ed.), Problems of Representations in the Teaching and Learning of Mathematics (pp. 33-40). Hillsdale, NJ: Lawrence Erlbaum.
Massa, L. J., & Mayer, R. E. (2006). Testing the ATI hypothesis: Should multimedia instruction accommodate verbalizer-visualizer cognitive style? Learning and Individual Differences, 16(4), 321-335.
Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.
Mayer, R. E. (2011). Applying the science of learning. Boston, MA: Pearson.
Mayer, R. E. (Ed.). (2014). The Cambridge handbook of multimedia learning (2nd ed.). New York: Cambridge University Press.
Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90(2), 312-320.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.
Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social agency in computer-based teaching: Do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction, 19, 177–213.
National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics (NCTM). (2014). Principles to Actions: Ensuring Mathematical Success for All. Reston, VA: NCTM.
Paas, F., & van Merriënboer, J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122–133.
Penney, C. G. (1989). Modality effects and the structure of short-term verbal memory. Memory & Cognition, 17, 398–422.
Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.
Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12, 61–86.
Richardson, A. (1977). Verbalizer-visualizer: A cognitive style dimension. Journal of Mental Imagery, 1(1), 109-125.
Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185–233.
Sweller, J., Ayres, P. L., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
Tripathi, P. N. (2008). Developing mathematical understanding through multiple representations. Mathematics Teaching in the Middle School, 13(8), 438-445.
Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305.
Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65-81). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.