簡易檢索 / 詳目顯示

研究生: 李岳豈
Yue Chi
論文名稱: 改良型積分器於伺服馬達之定位控制應用
An Improved Reset Integrator for the Position Control of a Servo Motor
指導教授: 呂有勝
Lu, Yu-Sheng
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 129
中文關鍵詞: 滑動積分回授定位控制Clegg積分器
英文關鍵詞: Integral sliding feedback, Position control, Clegg integrator
論文種類: 學術論文
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種改良型重置積分的方法,以改善系統輸出響應,並以實作方式驗證其可行性。以往控制器採用的積分器多為線性積分器(linear integrator, LI),可降低系統的穩態誤差,但同時易使系統輸出產生超越量。文獻中已提出一種重置(reset)的方法,當系統誤差等於零的瞬間,立即將積分器的輸出值歸零,稱之為Clegg積分器(Clegg integrator, CI)。CI於暫態時將積分器輸出值歸零可降低超越量,但是於穩態時積分值的歸零造成控制系統無法抵抗外部直流干擾。本文提出改良型重置積分器的方法,其在暫態時可進一步降低LI控制系統輸出的超越量,並且加快系統安定時間;穩態時亦可抑制干擾,改善CI控制系統的穩態響應。
    本文實驗平台共有兩個系統,其一以無刷伺服馬達安裝平衡負載或偏心負載,以分別建立線性或非線性實驗平台;另一以無刷伺服馬達結合導螺桿組成之線性平台,進行直線運動定位控制驗證。以上兩個平台均採用TI TMS320C6713 DSP與Xilinx可程式閘陣列(FPGA)結合而成之控制器硬體核心,並以C語言與硬體描述語言(VHDL)作為控制器設計之發展工具。將本文所提出之改良型積分器於此實驗平台驗證,並且由實驗結果可知本方法具有實用性。

    This paper presents an improved reset integration method, in order to refine system output responses. In conventional controllers, a linear integrator (LI) is introduced to improve the steady-state responses. But the LI simultaneously causes system overshoot. J. C. Clegg firstly proposed a reset control element, called Clegg integrator (CI), which overcomes the limitations of the linear control. The CI resets the integrator’s output to zero whenever the CI’s input crosses zero. This reset motion reduces system overshoot and settling time, but leads to weak disturbance rejection. The purpose of this paper is to modify this reset control in order to combine the benefits of the LI and the CI.
    This paper employs two experimental systems: the first one consists of a brushless servo motor and a pair of inertial loads, so that the system can have either symmetric or eccentric payloads. Another one contains a brushless servo motor and a commercially available single-axis ball screw. In the experimental system, the control kernel is a DSP/FPGA system, and the C language and VHDL are utilized as developing tools for the servo control system. Experiments of the reset method have been conducted and proven to have better transient and steady responses than past approaches.

    摘 要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 論文架構 5 第二章 實驗系統與系統鑑別 6 2.1 無刷伺服系統 6 2.1.1 硬體與訊號處理架構[24] 6 2.1.2 系統鑑別[24] 9 2.2 線性平台系統 10 2.2.1 硬體與訊號處理架構[24] 10 2.2.2 系統位置與速度回授訊號[24] 12 2.2.3 線性平台系統鑑別[24] 13 第三章 提前重置積分器設計(Clegg Integrator with Advance Reset, CI-AR) 14 3.1 線性積分器 (Linear Integrator, LI)之PID控制律設計 14 3.2 Clegg積分器(Clegg Integrator, CI)導入[2] 16 3.3 提前重置Clegg積分器(CI with Advance Reset, CI-AR) 18 3.4 PID控制器於無刷伺服系統之定位實驗 20 3.4.1 LI、CI與CI-AR於平衡負載之實驗 20 3.4.2 LI、CI與CI-AR於偏心負載之實驗 22 3.4.3 CI-AR與CI-ID於偏心負載之實驗 23 3.4.4 CI-AR之不同邊界值於偏心負載之實驗 25 3.4.5 LI、CI與CI-AR相異步階命令於偏心負載之實驗 26 第四章 改良型Clegg積分器(Improved Clegg Integrator, ICI)之架構與實現 28 4.1 靜態回授控制器(Static State Feedback, SSF)設計 28 4.2 誤差積分回授(Integral Error Feedback, IEF)設計 29 4.2.1 IEF w. LI控制器設計 30 4.2.2 Clegg積分器(Clegg Integrator, CI)之導入[2] 31 4.3 滑動積分回授(Integral Sliding Feedback, ISF)控制器設計 32 4.3.1 ISF w. LI控制器設計 32 4.3.2 改良型Clegg積分器(Improved Clegg integrator, ICI)設計 34 4.3.3 提前重置ICI (ICI with Advance Reset, ICI-AR)設計 35 4.4 IEF與ISF於線性平台系統之定位實驗 38 4.4.1 IEF與ISF於無外加干擾之實驗 38 4.4.2 IEF與ISF往返定位於無外加干擾之實驗 41 4.4.3 IEF與ISF於加入直流干擾之實驗 42 4.4.4 ISF w. ICI-AR於加入直流干擾之實驗 44 4.4.5 ISF w. ICI-AR於無外加干擾之實驗 46 4.4.6 ISF w. ICI-AR之不同 值於無外加干擾之實驗 48 第五章 比例-積分型滑動模式控制律之ICI導入 (PI-type SMC with ICI)設計 50 5.1 滑動模式控制律(Variable Structure Control, VSC)設計[23] 50 5.2 IVSC控制律設計[23] 53 5.3 PI-type SMC控制律 57 5.3.1 PI-type SMC控制律設計 57 5.3.2 ICI導入PI-type SMC (PI-SMC with ICI) 64 5.4 PI-type SMC於線性平台之定位實驗 69 5.4.1 IVSC與PI-SMC於無外加干擾之實驗 69 5.4.2 PI-SMC w. ICI-AR於直流干擾之實驗 78 第六章 模糊調變(Fuzzy-Tuning)之滑動線斜率應用 87 6.1 滑動線斜率之模糊調變(Fuzzy Tuning)設計 87 6.2 模糊調變導入ISF w. ICI (ISF w. Fuzzy ICI) 88 6.3 模糊調變導入PI-type SMC w. ICI (PI-type SMC w. Fuzzy ICI) 91 6.4 ISF w. Fuzzy ICI-AR於線性平台系統之定位實驗 93 6.4.1 ISF w. Fuzzy ICI-AR於無干擾之實驗 93 6.4.2 ISF w. Fuzzy ICI於直流干擾之實驗 96 6.4.3 ISF w. Fuzzy ICI-AR於相同安定時間於無干擾之實驗 98 6.5 PI-SMC w. Fuzzy ICI-AR於線性平台系統之定位實驗 101 6.5.1 PI-SMC w. Fuzzy ICI-AR於無干擾之實驗 101 6.5.2 PI-SMC w. Fuzzy-ICI-AR於直流干擾之實驗 110 6.5.3 PI-SMC w. Fuzzy ICI-AR於相同安定時間於無干擾之實驗 119 第七章 結論 124 參考文獻 125 附錄A 積分空乏區Clegg積分器(CI with Integration Deadband, CI-ID) 128

    [1] Y. Chait and C. V. Hollot, “On Horowitz’s contributions to reset control,” Int. J. Robust Nonlinear Control, vol. 12, pp. 335–355, 2002.
    [2] J. C. Clegg, “A nonlinear integrator for servomechanisms,” Trans. AIEE, Part II, Appl. Ind., vol. 77, pp. 41–42, 1958.
    [3] W.H.T.M. Aangenent, G. Witvoet, W.P.M.H. Heemels, Molengraft, M.J.G. van de, and M. Steinbuch, "Performance analysis of reset control systems," Int. J. Robust Nonlinear Control, vol. 20, pp. 1213-1233, 2010.
    [4] O. Beker, C.V. Hollot, and Y. Chait, “Plant with integrator: an example of reset control overcoming limitations of linear feedback,” IEEE Trans. Autom. Control, vol. 46, no. 11, pp. 1797 –1799, 2001.
    [5] Y. Guo, Y. Wang, L. Xie, H. Li, and W. Gui, “Optimal reset law design and its application to transient response improvement of HDD systems, “ IEEE Trans. Control Syst. Technol., vol., no. 5, pp. 1160-1167, 2011.
    [6] Q. Feng, S. Shuang, S. Jia, and Z. Quanming, “Sliding mode control design of active vehicle suspension systems with two-time scale submodels," Adv. Sci. Lett., vol. 4, no. 3, pp. 953-957, 2011.
    [7] M. Karpenko and N. Sepehri, “Development and experimental evaluation of a fixed-gain nonlinear control for a low-cost pneumatic actuator, “ IEE Proc. Control Theory Appl., vol. 153, no. 6, pp. 629. 2006.
    [8] D. Wu, G. Guo, and Y. Wang, “Reset integral-derivative control for HDD servo systems, “ IEEE Trans. Control Syst. Technol., vol. 15, no. 1, pp. 161-167, 2007.
    [9] J. Zheng, Y. Guo, M. Fu, Y. Wang, and L. Xie, “Development of an extended reset controller and its experimental demonstration,” IET Contr. Theory Appl., vol. 2, no. 10, pp. 866-874, 2011.
    [10] Y. Guo, Y. Wang, L. Xie, and J. Zheng, “Stability analysis and design of reset systems: theory and an application,” Automatica, vol. 45, no. 2, pp. 492–497, 2009.
    [11] Y. Guo, Y. Wang, and L. Xie, “Frequency-domain properties of reset systems with application in hard-disk-Drive Systems,” IEEE Trans. Control Syst. Technol., vol. 17, no. 6, pp. 1446, 2009.
    [12] Y. Guo, W. Gui, C. Yang, and L. Xie, “Stability analysis and design of reset control systems with discrete-time triggering conditions,” Automatica, vol. 48, no. 3, pp. 528–535, 2012.
    [13] K. E. Rifai and O. E. Rifai, “Design of hybrid resetting PID and lag controllers with application to motion control,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 685-692, 2009.
    [14] O. Beker, C. V. Hollot, Y. Chait, and H. Han, “Fundamental properties of reset control systems,” Automatica, Vol. 40, pp. 905-915, 2004.
    [15] D. Nesic, A.R. Teel and L. Zaccarian. “On necessary and sufficient conditions for exponential and L2 stability of planar reset systems,” American Control Conference, pp. 4140-4145, 2008.
    [16] T. L. Tai and Y. S. Lu, “Global sliding mode control with chatter alleviation for robust eigenvalue assignment,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 220, no. 7, pp.574-584, 2006.
    [17] Y. S. Lu and J. S. Chen, “Design of a global sliding-mode controller for a motor drive with bounded control,” Int J. Control, vol. 62, No. 5, pp. 1001-1019, 2006.
    [18] L. W. Chang, ”Dynamics of a sliding control with a first-order plus integral sliding condition,” Dynamic and Control, vol. 2, No. 2, pp. 201-219, 1992.
    [19] Y. Cuneyt and H. Yildirim, “Eliminating the reaching phase from variable structure control,” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 122, no. 4, pp. 753-757, 2000.
    [20] F. Yorgancıo˘glu and H. Kömürcügil, “Single-input fuzzy-like moving sliding surface approach to the sliding mode control,” Electr. Eng., vol. 90, no. 3, pp. 199–207, 2008.
    [21] Q.P. Ha, D.C. Rye, and H.F. Durrant-Whyte, “Fuzzy moving sliding mode control with application to robotic manipulators,” Automatica, vol. 35, no. 4, pp. 607-616, 1999.
    [22] K. G. Sung, S. B. Choi, and M. Kyu, “Design and control of electrorheological suspension using fuzzy moving sliding mode control,” Adv. Sci. Lett., vol. 4, no. 3, pp. 885-890, 2011.
    [23] 劉聖濠,積分控制之初始值補償策略實作,國立雲林科技大學機械工程學系碩士論文,2008。
    [24] 李宗恆,以加速度訊號輔助速度估測之性能評估,國立臺灣師範大學機電科技學系碩士論文,2011。

    無法下載圖示 本全文未授權公開
    QR CODE