研究生: |
李岳豈 Yue Chi |
---|---|
論文名稱: |
改良型積分器於伺服馬達之定位控制應用 An Improved Reset Integrator for the Position Control of a Servo Motor |
指導教授: |
呂有勝
Lu, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 滑動積分回授 、定位控制 、Clegg積分器 |
英文關鍵詞: | Integral sliding feedback, Position control, Clegg integrator |
論文種類: | 學術論文 |
相關次數: | 點閱:142 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種改良型重置積分的方法,以改善系統輸出響應,並以實作方式驗證其可行性。以往控制器採用的積分器多為線性積分器(linear integrator, LI),可降低系統的穩態誤差,但同時易使系統輸出產生超越量。文獻中已提出一種重置(reset)的方法,當系統誤差等於零的瞬間,立即將積分器的輸出值歸零,稱之為Clegg積分器(Clegg integrator, CI)。CI於暫態時將積分器輸出值歸零可降低超越量,但是於穩態時積分值的歸零造成控制系統無法抵抗外部直流干擾。本文提出改良型重置積分器的方法,其在暫態時可進一步降低LI控制系統輸出的超越量,並且加快系統安定時間;穩態時亦可抑制干擾,改善CI控制系統的穩態響應。
本文實驗平台共有兩個系統,其一以無刷伺服馬達安裝平衡負載或偏心負載,以分別建立線性或非線性實驗平台;另一以無刷伺服馬達結合導螺桿組成之線性平台,進行直線運動定位控制驗證。以上兩個平台均採用TI TMS320C6713 DSP與Xilinx可程式閘陣列(FPGA)結合而成之控制器硬體核心,並以C語言與硬體描述語言(VHDL)作為控制器設計之發展工具。將本文所提出之改良型積分器於此實驗平台驗證,並且由實驗結果可知本方法具有實用性。
This paper presents an improved reset integration method, in order to refine system output responses. In conventional controllers, a linear integrator (LI) is introduced to improve the steady-state responses. But the LI simultaneously causes system overshoot. J. C. Clegg firstly proposed a reset control element, called Clegg integrator (CI), which overcomes the limitations of the linear control. The CI resets the integrator’s output to zero whenever the CI’s input crosses zero. This reset motion reduces system overshoot and settling time, but leads to weak disturbance rejection. The purpose of this paper is to modify this reset control in order to combine the benefits of the LI and the CI.
This paper employs two experimental systems: the first one consists of a brushless servo motor and a pair of inertial loads, so that the system can have either symmetric or eccentric payloads. Another one contains a brushless servo motor and a commercially available single-axis ball screw. In the experimental system, the control kernel is a DSP/FPGA system, and the C language and VHDL are utilized as developing tools for the servo control system. Experiments of the reset method have been conducted and proven to have better transient and steady responses than past approaches.
[1] Y. Chait and C. V. Hollot, “On Horowitz’s contributions to reset control,” Int. J. Robust Nonlinear Control, vol. 12, pp. 335–355, 2002.
[2] J. C. Clegg, “A nonlinear integrator for servomechanisms,” Trans. AIEE, Part II, Appl. Ind., vol. 77, pp. 41–42, 1958.
[3] W.H.T.M. Aangenent, G. Witvoet, W.P.M.H. Heemels, Molengraft, M.J.G. van de, and M. Steinbuch, "Performance analysis of reset control systems," Int. J. Robust Nonlinear Control, vol. 20, pp. 1213-1233, 2010.
[4] O. Beker, C.V. Hollot, and Y. Chait, “Plant with integrator: an example of reset control overcoming limitations of linear feedback,” IEEE Trans. Autom. Control, vol. 46, no. 11, pp. 1797 –1799, 2001.
[5] Y. Guo, Y. Wang, L. Xie, H. Li, and W. Gui, “Optimal reset law design and its application to transient response improvement of HDD systems, “ IEEE Trans. Control Syst. Technol., vol., no. 5, pp. 1160-1167, 2011.
[6] Q. Feng, S. Shuang, S. Jia, and Z. Quanming, “Sliding mode control design of active vehicle suspension systems with two-time scale submodels," Adv. Sci. Lett., vol. 4, no. 3, pp. 953-957, 2011.
[7] M. Karpenko and N. Sepehri, “Development and experimental evaluation of a fixed-gain nonlinear control for a low-cost pneumatic actuator, “ IEE Proc. Control Theory Appl., vol. 153, no. 6, pp. 629. 2006.
[8] D. Wu, G. Guo, and Y. Wang, “Reset integral-derivative control for HDD servo systems, “ IEEE Trans. Control Syst. Technol., vol. 15, no. 1, pp. 161-167, 2007.
[9] J. Zheng, Y. Guo, M. Fu, Y. Wang, and L. Xie, “Development of an extended reset controller and its experimental demonstration,” IET Contr. Theory Appl., vol. 2, no. 10, pp. 866-874, 2011.
[10] Y. Guo, Y. Wang, L. Xie, and J. Zheng, “Stability analysis and design of reset systems: theory and an application,” Automatica, vol. 45, no. 2, pp. 492–497, 2009.
[11] Y. Guo, Y. Wang, and L. Xie, “Frequency-domain properties of reset systems with application in hard-disk-Drive Systems,” IEEE Trans. Control Syst. Technol., vol. 17, no. 6, pp. 1446, 2009.
[12] Y. Guo, W. Gui, C. Yang, and L. Xie, “Stability analysis and design of reset control systems with discrete-time triggering conditions,” Automatica, vol. 48, no. 3, pp. 528–535, 2012.
[13] K. E. Rifai and O. E. Rifai, “Design of hybrid resetting PID and lag controllers with application to motion control,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 685-692, 2009.
[14] O. Beker, C. V. Hollot, Y. Chait, and H. Han, “Fundamental properties of reset control systems,” Automatica, Vol. 40, pp. 905-915, 2004.
[15] D. Nesic, A.R. Teel and L. Zaccarian. “On necessary and sufficient conditions for exponential and L2 stability of planar reset systems,” American Control Conference, pp. 4140-4145, 2008.
[16] T. L. Tai and Y. S. Lu, “Global sliding mode control with chatter alleviation for robust eigenvalue assignment,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 220, no. 7, pp.574-584, 2006.
[17] Y. S. Lu and J. S. Chen, “Design of a global sliding-mode controller for a motor drive with bounded control,” Int J. Control, vol. 62, No. 5, pp. 1001-1019, 2006.
[18] L. W. Chang, ”Dynamics of a sliding control with a first-order plus integral sliding condition,” Dynamic and Control, vol. 2, No. 2, pp. 201-219, 1992.
[19] Y. Cuneyt and H. Yildirim, “Eliminating the reaching phase from variable structure control,” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 122, no. 4, pp. 753-757, 2000.
[20] F. Yorgancıo˘glu and H. Kömürcügil, “Single-input fuzzy-like moving sliding surface approach to the sliding mode control,” Electr. Eng., vol. 90, no. 3, pp. 199–207, 2008.
[21] Q.P. Ha, D.C. Rye, and H.F. Durrant-Whyte, “Fuzzy moving sliding mode control with application to robotic manipulators,” Automatica, vol. 35, no. 4, pp. 607-616, 1999.
[22] K. G. Sung, S. B. Choi, and M. Kyu, “Design and control of electrorheological suspension using fuzzy moving sliding mode control,” Adv. Sci. Lett., vol. 4, no. 3, pp. 885-890, 2011.
[23] 劉聖濠,積分控制之初始值補償策略實作,國立雲林科技大學機械工程學系碩士論文,2008。
[24] 李宗恆,以加速度訊號輔助速度估測之性能評估,國立臺灣師範大學機電科技學系碩士論文,2011。