研究生: |
許緯仁 Xu, Wei-Ren |
---|---|
論文名稱: |
Deep Neuron Networks on Gravitational Wave Data Analysis Deep Neuron Networks on Gravitational Wave Data Analysis |
指導教授: |
林豐利
Lin, Feng-Li |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 52 |
英文關鍵詞: | Gravitational wave |
DOI URL: | http://doi.org/10.6345/NTNU202000145 |
論文種類: | 學術論文 |
相關次數: | 點閱:194 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
As the increasing sensitivity of gravitational wave detectors, the detection of
gravitational wave events will be more and more frequent. Due to the fact that
the gravitational waves of BNS and NSBH will arrive at the earth before the
electromagnetic wave counterparts. The gravitational wave-triggered multi-
messenger observation becomes a promising region of Astronomy. To meet the
requirements of multi-messenger observation, the latency of search algorithm
must be within few seconds.
In this thesis, we constructed two convolutional neuron networks, one for
detecting the present of the gravitational waves and the other for estimating
physical parameters of the gravitational waves. Our neuron networks take
only 4 seconds to process 3944 seconds data. The accuracy of our neuron
network is larger than 99 % for detection when the SNR is larger than 12,
and the mean relative errors are less than 10 % when the SNR is larger than
9. We also tested our DNNs with four gravitational wave events: GW150914,
GW151226, GW170104 and GW170814.
Keywords: Gravitational wave, Deep neural network.
[1] Bernard F. Schutz. A first course in general relativity. Cambridge University Press, 1985.
[2] Michele Maggiore. Gravitational Waves: Volume 1: Theory and Experiments. Oxford University Press, 2008.
[3] J. H. Taylor and J. M. Weisberg. “A new test of general relativity Gravitational radiation and the binary pulsar PSR 1913+16”. In: Astrophysical Journal 253 (1982), pp. 908–920. doi: https://dx.doi.org/10.1086/159690.
[4] M. E. Gertsenshtein. “Wave Resonance of Light and Gravitational Waves”.In: Journal of Experimental and Theoretical Physics 14.1 (1962), pp. 84–85.
[5] Alex Abramovici et al. “LIGO: The Laser Interferometer Gravitational Wave Observatory”. In: Science 256.5055 (1992), pp. 325–333. doi: 10.1126/science.256.5055.325.
[6] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”. In: PHYSICAL REVIEW LETTERS 116.061102 (2016). doi: 10.1103/PhysRevLett.116.061102.
[7] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral”. In: PHYSICAL REVIEW LETTERS 119.161101 (2017). doi: 10.1103/PhysRevLett.119.161101.
[8] B. P. Abbott et al. “Properties of the Binary Neutron Star Merger GW170817”. In: PHYSICAL REVIEW X 9.011001 (2019). doi: 10.1103/PhysRevX.9.011001.
[9] B. P. Abbott et al. “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs”. In: arXiv e-prints (2018), arXiv:1811.12907.
[10] Alexander H. Nitz et al. “1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data”. In: The Astrophysical Journal 872.2 (2019), p. 195. doi: 10.3847/1538-4357/ab0108.
[11] A. V. Tutukov and L. R. Yungelson. “The merger rate of neutron star and black hole binaries”. In: Monthly Notices of the Royal Astronomical Society 260.3 (1993), pp. 675–678. doi: 10.1093/mnras/260.3.675.
[12] Ilya Mandel and Richard O’Shaughnessy. “Compact binary coalescences in the band of ground-based gravitational-wave detectors”. In: IOP Publishing 27.11 (2010), p. 114007. doi: 10.1088/0264-9381/27/11/114007.
[13] Christopher S. Kochanek and Tsvi Piran. “Gravitational Waves and γ-Ray Bursts”. In: arXiv e-prints (1993), arXiv:astro–ph/9305015. doi:10.1086/187083.
[14] O1 Results Highlight the Capabilities of Advanced LIGO. url: http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm.
[15] Gravitational Wave Open Science Center. url: https://www.gw-openscience.org/about/.
[16] Bruce Allen et al. “FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries”. In: PHYSICAL REVIEW D 85.122006 (2012). doi: 10.1103/PhysRevD.85.122006.
[17] Cody Messick et al. “Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data”. In: PHYSICAL REVIEW D 95.042001 (2017). doi: 10.1103/PhysRevD.95.042001.
[18] Kipp Cannon, Chad Hanna, and Jacob Peoples. “Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation”. In: arXiv e-prints (2015), arXiv:1504.04632.
[19] P. Ajith et al. “Phenomenological template family for black-hole coalescence waveforms”. In: IOP Publishing 24.19 (2007), S689–S699. doi: 10.1088/0264-9381/24/19/S31.
[20] A. Buonanno and T. Damour. “Eective one-body approach to general relativistic two-body dynamics”. In: PHYSICAL REVIEW D 59.8 (1999), p. 084006. doi: 10.1103/PhysRevD.59.084006.
[21] Bruce Allen. “χ 2 time-frequency discriminator for gravitational wave detection”. In: PHYSICAL REVIEW D 71.062001 (2005), p. 22. doi: 10.1103/PhysRevD.71.062001.
[22] M Zevin et al. “Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science”. In: Classical and Quantum Gravity 34.6 (2017), p. 064003. doi: 10.1088/1361-6382/aa5cea.
[23] Kipp Cannon et al. “TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE”. In: The Astrophysical Journal 748.2 (2012), p. 136. doi: 10.1088/0004-637x/748/2/136.
[24] Shaun Hooper et al. “Progress on the Low-Latency Inspiral Gravitational Wave Detection algorithm known as SPIIR”. In: Journal of Physics: Conference Series 363 (2012), p. 012027. doi: 10.1088/1742-6596/363/1/012027.
[25] Daniel George and E. A. Huerta. “Deep neural networks to enable real-time multimessenger astrophysics”. In: PHYSICAL REVIEW D 97.044039 (2017). doi: 10.1103/PhysRevD.97.044039.
[26] L. F. MENABREA and Augusta Ada KING. Sketch of the Analytical Engine Invented by Charles Babbage. Scientific Memoirs, 2014.
[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, 2016.
[28] Shlomo Mor-Yosef et.al. “Ranking the risk factors for cesarean: Logistic regression analysis of a nationwide study”. In: Obstetrics and gynecology 75 (1990), pp. 944–7.
[29] F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization in the brain.” In: Psychological Review 65.6 (1958), pp. 386–408. doi: 10.1037/h0042519.
[30] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, 1969.
[31] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springe, 2011.
[32] Leo P. Singer et al. “THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO”. In: The Astrophysical Journal 795.2 (2014), p. 105. doi: 10.1088/0004-637x/795/2/105.
[33] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position”. In: Biological Cybernetics 36.4 (1980), pp. 193–202. doi: 10.1007/BF00344251.
[34] Alex Krizhevsky et al. “ImageNet Classification with Deep Convolutional Neural Networks”. In: 9 (2012), pp. 1097–1105.
[35] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International Journal of Computer Vision 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.
[36] Tjonnie G. F. Li. Extracting Physics from Gravitational Waves. Springer, 2015.
[37] Kipp Cannon et al. “TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE”. In: The Astrophysical Journal 748.2 (2012), p. 136. doi: 10.1088/0004-637x/748/2/136.
[38] Ben Margalit and Brian D. Metzger. “Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817”. In: The Astrophysical Journal 850.2 (2017), p. L19. doi: 10.3847/2041-8213/aa991c.
[39] David Radice et al. “GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations”. In: The Astrophysical Journal 852.2 (2018), p. L29. doi: 10.3847/2041- 8213/aaa402.
[40] B. P. Abbott et. al. “LOCALIZATION AND BROADBAND FOLLOWUP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914”. In: The Astrophysical Journal 826.1 (2016), p. L13. doi: 10.3847/2041-8205/826/1/l13.
[41] Surabhi Sachdev et al. “The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO’s Second and Advanced Virgo’s First Observing Runs”. In: (2019). arXiv: 1901.08580 [gr-qc].
[42] Alex Nitz et al. gwastro/pycbc: PyCBC Release v1.14.0. 2019. doi: 10.5281/zenodo.3247679. url: https://doi.org/10.5281/zenodo.3247679.
[43] David Shoemaker. Advanced LIGO anticipated sensitivity curves OBSOLETE. url: https://dcc.ligo.org/LIGO-T0900288/public.
[44] B.T. Polyak. “Some methods of speeding up the convergence of iteration methods”. In: USSR Computational Mathematics and Mathematical Physics 4.5 (1964), pp. 1 –17. issn: 0041-5553. doi: https://doi.org/10.1016/0041-5553(64)90137-5.
[45] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning. 2012.
[46] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A Method for Stochastic Optimization”. In: arXiv e-prints (2014), arXiv:1412.6980.
[47] Hongyu Shen et al. “Deterministic and Bayesian Neural Networks for Low-latency Gravitational Wave Parameter Estimation of Binary Black Hole Mergers”. In: arXiv e-prints (2019), arXiv:1903.01998.
[48] Hunter Gabbard et al. “Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy”. In: (2019). arXiv: 1909.06296 [astro-ph.IM].
[49] Daniel George, Hongyu Shen, and E. A. Huerta. “Classification and unsupervised clustering of LIGO data with Deep Transfer Learning”. In: Phys. Rev. D 97 (10 2018), p. 101501. doi: 10.1103/PhysRevD.97.101501. url: https://link.aps.org/doi/10.1103/PhysRevD.97.101501.
[50] Chayan Chatterjee et al. “Using Deep Learning to Localize Gravitational Wave Sources”. In: (2019). arXiv: 1909.06367 [astro-ph.IM].
[51] B. P. Abbott et al. “Multi-messenger Observations of a Binary Neutron Star Merger”. In: The Astrophysical Journal 848.2 (2017), p. L12. doi: 10.3847/2041-8213/aa91c9.