簡易檢索 / 詳目顯示

研究生: 鄭鈞庭
Zheng, Jun-Ting
論文名稱: 具關節力矩感測之撓性關節系統雙向控制
Bilateral Control of Flexible-Joint Systems with Joint Torque Sensors
指導教授: 呂有勝
Lu, Yu-Sheng
口試委員: 呂有勝
Lu, Yu-Sheng
王富正
Wang, Fu-Cheng
吳尚德
Wu, Shang-Teh
吳順德
Wu, Shuen-De
口試日期: 2024/07/18
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 78
中文關鍵詞: 撓性關節關節力矩感測雙向控制運動控制外力估測
英文關鍵詞: flexible joint, joint torque sensing, bilateral control, motion control, external force estimation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401776
論文種類: 學術論文
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對撓性關節系統,本研究旨在透過讀取關節力矩感測器和軸編碼器,獲得關節力矩與角位置,實現關節力矩控制,並應用於雙向控制。考慮關節撓性,對關節手臂進行系統鑑別之後,設計一雙迴路系統,內迴路實現關節力矩控制,而外迴路實現雙向控制,發展適用於撓性關節系統之雙向控制架構。此外,進一步設計一估測器,利用關節力矩和馬達端的位置,估測負載端的位置及外力,以免除負載位置編碼器的與外部力量感測器的安裝。
    實驗室內部成員共同研發設計與組裝一雙撓性關節系統,以作為實驗平台。該平台使用Sensodrive GmbH的SENSO-Joint 3008關節,利用RTX64即時作業系統將一般的個人電腦轉變為即時控制核心,以電腦為主站透過EtherCAT連接其他從站,並使用微軟的Visual Studio Code(VS)發展C++控制程式。
    本研究設計的方法將與其它控制方法進行實驗比較,包括不考慮關節撓性的控制方法及考慮撓性系統但未量測關節力矩的控制方法,通過性能指標來評估其優劣。實驗結果顯示,考慮關節撓性的控制系統優於基於剛體模型的控制系統,而量測關節力矩的回授控制又優於僅回授馬達及負載位置的控制。此外,估測器能準確地估測負載位置及外力,並應用於雙向控制,其表現優於其它控制方法,進一步提升系統性能。

    This study focuses on flexiblejoint systems, achieving joint-torque control and applying it to bilateral control with joint torque sensors and shaft encoders. Considering joint flexibility, an inner loop is designed for torque control, while an outer loop achieves bilateral control. An estimator is developed using joint torque and motor position to accurately estimate load position and external force, eliminating the need for additional sensors.
    The experimental platform utilizes Sensodrive GmbH’s SENSO-Joint 3008 joints. The RTX64 real-time operating system is used to transform a general personal computer (PC) into a real-time controller. The PC connects to other devices via EtherCAT, and Visual Studio Code is employed for developing C++ control programs.
    The study experimentally compares various control methods, showing that systems considering flexibility and joint-torque feedback are superior to others. Experimental results show that the estimator can accurately estimate load position and external force, further enhancing system performance.

    摘 要 i ABSTRACT ii 目 錄 iii 表目錄 vi 圖目錄 vii 符號說明 xiv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 論文架構 3 第二章 實驗系統架構 5 2.1 實驗平台硬體架構介紹 5 2.1.1機械手臂關節 6 2.1.2 類比數位轉換器與數位類比轉換器 7 2.1.3力量感測器 9 2.1.4 感測器介面板 10 2.2 實驗軟體 10 2.3 訊號處理 11 第三章 雙向控制方法 14 3.1 系統模型 14 3.2 雙向控制的目標 14 3.3 雙向控制律設計 16 3.3.1回授馬達或負載位置之剛體雙向控制 16 3.3.2感應關節力矩之雙向控制 18 3.3.3估測負載位置與外力之雙向控制 21 3.4 性能指標 22 第四章 單機控制實驗 25 4.1 系統轉移函數推導 25 4.1.1 系統鑑別 27 4.1.2 系統參數最佳化 30 4.2 實驗路徑命令 33 4.3 回授馬達位置之剛體單機位置控制 34 4.4 回授負載位置之剛體單機位置控制 35 4.5 感應關節力矩之單機位置控制 36 4.5.1內迴路零力矩控制 37 4.5.2內迴路重力補償控制 38 4.5.3雙迴路控制 40 4.6 估測負載位置與外力之單機控制 41 4.7 單機各位置控制方法比較 43 4.8 結語 44 第五章 雙向控制實驗 45 5.1 自由運動之雙向控制 45 5.1.1回授馬達位置之剛體控制(RCA) 45 5.1.2回授負載位置之剛體控制(RCL) 47 5.1.3回授馬達及負載位置之控制(FCAL) 49 5.1.4感應關節力矩之控制(FCT) 51 5.1.5估測負載位置與外力之控制(FCT+JTAO) 53 5.1.6控制方法比較 54 5.2 與環境鎖固之雙邊控制 56 5.3 雙向控制之透明度測試 59 5.4 結語 63 第六章 結論與未來展望 64 參考文獻 65 附錄A機台設計 67 附錄B實際電流命令調整 70 附錄C延遲識別 71 附錄D單機力量控制 73 附錄E單機性能指標表 76

    [1] Y. Michel, R. Rahal, C. Pacchierotti, P.R. Giordano, and D. Lee, “Bilateral teleoperation with adaptive impedance control for contact tasks,” IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 5429–5436, Jul. 2021.
    [2] R. V. Patel, S. F. Atashzar, and M. Tavakoli, “Haptic feedback and force-based teleoperation in surgical robotics,” Proceedings of the IEEE, vol. 110, no. 7, pp. 1012–1027, 2022.
    [3] F. Cepolina and R.P. Razzoli, “An introductory review of robotically assisted surgical systems,” Int. J. Med. Robot., vol. 18, no. 4, paper no. e2409, 2022.
    [4] H. Lv et al., “GuLiM: A hybrid motion mapping technique for teleoperation of medical assistive robot in combating the COVID-19 pandemic,” IEEE Trans. Medical Robotics and Bionics, vol. 4, no. 1, pp. 106–117, Feb. 2022.
    [5] K. Tanida, T. Okano, T. Murakami, and K. Ohnishi, “An approach to architecture design of bilateral control system based on a layer structure,” IEEJ J. Ind. Appl., vol. 9, no. 4, p. 318–330, 2020.
    [6] D.A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robotics and Automation, vol. 9, no. 5, pp. 624–637, Oct. 1993.
    [7] A. Suzumura and Y. Fujimoto, “Generalized design of position-based bilateral control parameterized by complementary sensitivity function,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8707–8717, Nov. 2018.
    [8] J. Wen and D. Tian, “Bilateral control with disturbance observer and adaptive neural network compensation,” in Proc. 39th Chinese Control Conference, Jul. 2020, pp. 2658–2663.
    [9] N. Chopra, M.W. Spong, and R. Lozano, “Synchronization of bilateral teleoperators with time delay,” Automatica, vol. 44, no. 8, pp. 2142–2148, 2008.
    [10] D. Tian, B. Zhang, H. Shen, and J. Li, “Stability problem of wave variable based bilateral control: Influence of the force source design,” Math. Probl. Eng., vol. 2013, article no. 105298, 2013.
    [11] K.B. Fite, L. Shao, and M. Goldfarb, “Loop shaping for transparency and stability robustness in bilateral telemanipulation,” IEEE Trans. Rob. Autom., vol. 20, no. 3, pp. 620–624, Jun. 2004.
    [12] P.R. Deras and Y. Fujimoto, “Optimization of two-channel bilateral control based on sensitivity function through transparency analysis,” in Proc. IEEE Int. Symp. Ind. Electron., 2019, pp. 629–34.
    [13] Sensodrive GmbH https://www.sensodrive.de/products/torque-technology-senso-joint.php
    [14] Delta R1-EC5500D0 https://www.deltaww.com/zh-TW/products/06020302/3290
    [15] Delta R1-EC-8124 https://www.deltaww.com/zh-TW/products/06020302/3294
    [16] Advantech AMAX-4820 https://iotmart.advantech.com.tw/Data-Acquisition-Control/Motion-Control-Card-EtherCAT-Module/model-AMAX-4820-B.htm
    [17] Burster GmbH Model 8523 https://www.burster.com/en/sensors/p/detail/8523
    [18] Burster GmbH Model 9235 https://www.burster.com/en/sensor-electronics/amplifier-and-transmitter-modules/p/detail/9235

    無法下載圖示 本全文未授權公開
    QR CODE