簡易檢索 / 詳目顯示

研究生: 童峻家
Tong, Chun-Chia
論文名稱: 臺灣地區懸浮微粒、臭氧與氣象因子年循環關聯之分析
Analysis of the relationship between annual cycles of meteorological factors and particulate matter and ozone over Taiwan
指導教授: 洪致文
Hung, Chih-Wen
口試委員: 涂建翊
Tu, Jien-Yi
郭乃文
Guo, Nae-Wen
洪致文
Hung, Chih-wen
口試日期: 2022/07/20
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 104
中文關鍵詞: 臭氧PM2.5PM10PSIAQI空氣污染
英文關鍵詞: ozone, PM2.5, PM10, PSI, AQI, air pollution
研究方法: 次級資料分析調查研究主題分析現象分析
DOI URL: http://doi.org/10.6345/NTNU202201296
論文種類: 學術論文
相關次數: 點閱:71下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將1994-2020年間臺灣空品測站日資料進行長時間分析,探討測站之PSI(Pollution Standards Index, 空氣污染指標)或AQI(Air Quality Index, 空氣品質指標)指標值及污染物副指標值的季節變化,作為確認空污好發季節、主要污染物類型以及不同季節之主導污染物差異的分析結果。污染物濃度的年循環除了作為污染物間的季節相關比對外,亦與氣象日資料的長時間平均結果進行比對,以看出季節變化是否具有關聯,並以重分析資料分析全臺及區域氣象因子與污染物間的季節關聯。
    綜合指標值及副指標值的超標測站比年循環與月平均風場的分析結果顯示,台灣空氣污染集中於秋季中旬至隔年春季中旬,11-4月間以PM10、PM2.5污染為主,整體為東北風風場,10-11月及4-5月則以O3污染為主,整體為弱東風風場。進一步比對台灣空氣污染物間的濃度年循環,PM10、PM2.5與其前驅物之一的NOx具有季節上的相似性,O3與其前驅物NOx則未能看出有相似的季節變化,CO、NOx整體濃度皆直接反映出排放上的季節類似,季節變化則明顯受到風場影響而形成區域差異。至於空氣污染物與氣象因子的季節變化關聯上,降水主要影響固態粒狀空氣污染物如PM10、PM2.5等的濃度季節變化;風場則對於大多數污染物的濃度季節變化有顯著影響,無論是夏季偏南風或是冬季東北風的情況;而日照與O3的濃度季節變化較有關聯,尤其是日照時數與O3的季節變化,然而夏季的偏南風風場則使得O3濃度出現異常低值,因而造成O3的年循環有雙峰的狀況。本研究透過以上的分析,可看出長時間尺度下空氣污染於不同季節的程度差異,以及背後的原因與機制。

    關鍵字: 臭氧、PM2.5、PM10、PSI、AQI、空氣污染

    This study applies air quality daily data from air quality stations in Taiwan during the period between 1994 and 2020 for long-term analysis. Pollution Standards Index (PSI) and Air Quality Index (AQI) together with their associated pollutant sub-index are adopted to examine the peak period of air pollution, main pollutants, and dominant pollutants in different seasons. Through analyzing the long-term mean of station-based meteorological observation data and reanalysis gridded data, our research conducts investigations into the annual cycle of various pollutants for examining potential linkages between individual pollutants and clarifying seasonal relationships with meteorological factors in domestic and East Asian regions.
    Having compared the rate of stations exceeding the PSI, AQI and relevant sub-index threshold during a year with monthly mean observational wind field, this study finds that the air quality in Taiwan deteriorates mainly from the middle of fall through the middle of next spring. From November to April, PM10 and PM2.5 are the major pollutants and the northeasterly wind dominates the same period. Different from the one peak annual cycle pattern found in PM10 and PM2.5, O3 shows two peaks within a year from October to November and from April to May when the weak easterly wind blows over the studied regions.
    Further examining the long-term mean annual cycle pattern of different air pollutants, this study suggests that both PM10 and PM2.5 have a seasonal relationship with NOx which is a precursor of both PM2.5 and O3; however, there is no clear linkage found between O3 and NOx in terms of seasonal variation pattern. The concentration of CO and NOx reveals strong causalities with their emission sources and can be considerably affected by seasonal wind field, which in turn leads to regional differences in concentration. As for the relationships between individual air pollutants and meteorological factors, seasonal wind field exerts great influences on the concentration of most pollutants regardless of the dominating southerly wind in summer or northeasterly wind in winter. For solid particulate air pollutants such as PM10 and PM2.5, the amount of precipitation in each season mainly determines their concentrations. Compared with the other analyzed meteorological factors, the formation of O3 is more positively related to sunshine especially the sunshine duration which shows a strong seasonal resemblance with O3 concentration. On the other hand, the dominating southerly wind leads to an abnormally low O3 concentration in summer, forming the mentioned double peak patterns in the annual cycle of O3 concentration. Through the discussions above, this study demonstrates the severity of air pollution in different seasons in Taiwan and explains the associated underlying meteorological mechanisms from a long-term perspective.

    Keywords: Ozone, PM2.5, PM10, PSI, AQI, Air Pollution

    第一章 緒論 1 第一節 研究動機與目的 1 一 、研究動機 1 二 、研究目的 2 第二節 文獻回顧 3   一、空氣污染物特性 3 二、臺灣空氣污染概況 6 三、空氣污染指標(PSI)與空氣品質指標(AQI) 8 四、相關文獻回顧 12 五、小結 18 第二章 研究數據與方法 21 第一節 研究數據 21 一、空品測站資料 21 二、氣象測站資料 25 三、其他資料 28 第二節 研究區劃分 29 第三節 研究方式與操作 30 一、年循環平均 30 二、月平均 30 第四節 研究架構 31 第三章 全臺空氣污染季節特性分析 32 第一節 主要污染物類型分析與季節差異 32 一、測站指標值判讀 32 二、污染物副指標判讀 35 三、主導污染物季節差異 41 四、超標比例季節分布比對結果說明 43 第二節 污染物季節變化相關性比對分析 45 一、相關污染物選用 45 二、污染物濃度日資料年循環平均計算 46 三、全臺所有測站污染物濃度季節變化年循環結果比對說明 47 第四章 污染物濃度與氣象因子關聯探討 52 第一節 相關資料計算及處理 52 一、長時間氣象測站日資料的處理及計算 52 二、大尺度資料處理及計算 53 第二節 氣象因子與污染物比對分析 55 一、全臺日照年循環與污染物年循環關聯性分析 55 二、全臺降水年循環與污染物年循環關聯性分析 58 三、全臺風場與污染物年循環關聯性分析 59 第五章 污染物濃度、氣象因子季節變化區域差異探討 71 第一節 相關資料計算及處理 71 一、空品測站濃度日資料之區域年循環平均計算 71 二、氣象日資料之區域年循環平均計算I(日射量、日照時數、降水量) 72 三、氣象日資料之區域年循環平均計算II(V風場分量) 73 第二節 區域比對結果說明 74 一、CO、NOx、O3區域比對結果說明 74 二、O3、NOx與日照、風場資料區域比對結果說明 77 三、PM10、PM2.5與降水資料區域比對結果說明 83 第六章 結論 86 參考文獻 92 附錄 102 附錄一、移動污染源排放標準時間軸 102 附錄二、固定污染源排放標準時間軸 103 附錄三、PSI與AQI指標值與健康影響程度對照表 104

    王昌世,2010:中部空品區二氧化硫與氮氧化物的傳輸與污染成因分析。東海大學環境科學與工程學系碩士論文
    王嘉弘,1990:氣象條件對空氣品質的影響。第七屆空軟控制技術研討會論文專輯,229-244。
    冉隆恩,2015:空氣品質指標比較分析。國立交通大學環境工程研究所碩士論文。
    行政院環境保護署,2013:中華民國102年度空氣污染防制總檢討。
    行政院環保署,2016:總量管制排放量認可試行作業申請暨系統操作說明會資料:總量管制配套規範。
    余珈臻,2018:臺灣空氣品質指標PSI與AQI之探討─以臺中市為例。中興大學環境工程學系碩士論文。
    吳思緯,2016:細懸浮微粒(PM2.5)區域性來源與污染事件形成機制之模擬分析。國立雲林科技大學環境與安全衛生工程系環境與安全衛生工程組碩士論文。
    吳家興、林瑞雄、謝貴雄、邱文達、陳麗美、邱淑媞、黃國晉、劉文良、邱宏毅、蕭慧娟、方淑慧,1998:臺灣北部國中學生氣喘盛行率調查。中華公共衛生雜誌,17(3)。
    李崇恩、陳嘉惠、郭乃文,2018:假期效應:不同季節連續假期對臺灣各區域空氣品質影響之研究。地理研究,68。
    李清勝,1992:影響大臺北地區懸浮微粒濃度變化之氣象分析。大氣科學,20(4)。 
    李智慧,2009:雲嘉南地區空氣品質與氣象因子之分析。國立嘉義大學史地學系碩士論文。
    林佐美、陳育松、郭育誌、程萬里,2003:多元空氣品質指標(RAQI)應用之探討。東海科學,5,1-20。
    林政宏,1992:公館地區CO濃度與氣象要素的關係。師大學報,37,505-528。
    林煜棋,2012:平流層-對流層交換對低緯度山區臭氧之影響及其二氧化碳同位素特徵之研究(II)。行政院國家科學委員會專題研究計畫期末報告(2012)。
    柳中明、蔡育文、左臺利、羅俊光、劉紹臣,1994:碳氫化合物組合與近地面臭氧生成。大氣科學,22(3)。
    翁叔平、郭乃文、呂珮雯,2013:高高屏地區細懸浮微粒(PM2.5)污染事件的綜觀環境分析。大氣科學,41(1),43-64。
    翁佩詒、吳治達、蘇慧貞,2020:利用地理加權迴歸進行臺北都會區二氧化氮之模擬分析。航測及遙測學刊,25(1),1-10。
    袁君秋,2002:臺灣地區空氣品質指標之探討。國立臺灣大學環境工程學研究所碩士論文。
    商俊盛,1997:氣象因子對北高都會區空氣品質變化影響之研究。國立臺灣大學碩士論文。
    張立農、江孟玲、林昭遠,2015:臺灣交通空氣品質監測站 PM10變異影響因素之研究。水土保持學報,47(1),1235–1246。
    張艮輝、簡慧貞、呂鴻光,2002:臭氧污染控制物種與空氣污染防制策略之分析。環境保護,25(2)。
    張珅瀧,2017:探討氣象條件與空氣品質關聯性之研究-以中部空品區為例。國立中興大學環境工程學系在職專班碩士論文。
    張致瑋、謝雲生,2013:南臺灣懸浮微粒粒徑分佈特性分析。鑛冶:中國鑛冶工程學會會刊,4(57),20 – 26。
    張新民,2003:空氣污染學。臺北:新文京出版有限公司。
    張榕書,2006:1994-2004年臺灣近地面臭氧特性分析。國立中央大學大氣物理研究所碩士論文。
    郭育良、何奕倫、羅孟宗等,2014:細懸浮微粒(PM2.5)之心臟血管疾病流行病學調查研究。102年度環保署/國科會空污防制科研合作計畫。
    陳育松,2004:RAQI指標探討AQI與PSI之優缺得失。東海大學環境科學與工程學系碩士論文。
    陳康興、陳瑞仁、林銳敏、黃國林等,2007:95 年度「環保署/國科會空污防制科研合作計畫」成果完整報告。國立中山大學,NSC 95-EPA-Z-110-001。
    陳淑萍,2006:臺中都會區氣態亞硝酸污染物之觀測及生成機制的分析。國立中興大學環境工程學系所碩士論文。
    陳鴻烈、羅惠芬,2009:空氣污染物及其光化反應生成臭氧濃度之日變化分析。水土保持學報,41(1),1-16。
    麥耀仁、孫安正、林錕松,2012:新興都市之形成與空氣中逸散污染源之關係:以新北市為例。工業污染防治,121(53)。
    彭彥彬,2016:彭彥彬老師親撰焦點話題---臺灣空氣品質與氣象條件之關係。東海大學環境科學與工程學系。
    曾韋勳,2012:高屏大氣懸浮微粒於不同天氣型態之特徵與氣象因子關聯性研究。國立成功大學環境工程研究所碩士論文。
    程萬里,2004:中部空品區空氣品質改善效益與地區因素之關聯性研究-總計畫暨子計畫:季節性大氣結構與空氣污染垂直剖面監測並涵容量變化探討。東海大學環境科學與工程學系所國科會研究報告。
    程詩瑋,2006:桃園地區臭氧污染與氣象條件相關性之探討。臺灣師範大學碩論。
    楊之遠、柳中明,1996:臺灣臭氧光化污染嚴重個案分析(1993-1994)。環境保護,19(2),30-59。
    楊之遠、黃偉鳴,2016:細懸浮微粒與能源:Top-down與Bottom-up。中華民國環境工程學會電子報105年第4期。
    楊慈定、王秋森,2001:臺北都會區室內外細粒徑氣懸浮微粒的特性及汽機車污染源之探討。臺灣衛誌,20(4)。
    溫天雪、王躍思、張凱,2007:采暖季北京大氣PM10中硫酸鹽與劉氧化率的觀測研究。中國科學院研究生院學報,5(24),584 – 589。
    葉惠中、陳起鳳、李家儂、楊之遠、謝長城、郭韋翔、江京蓁、洪嘉祥,2013:細懸浮微粒(PM2.5)時空分布特性之研究。102年度環保署/國科會空污防制科研合作計畫期末報告。
    葛應欽,1996:臺灣空氣污染與社區居民健康效應。高雄醫學科學雜誌,,12(12)。
    蔣至剛,2010:北臺灣地區臭氧污染之季節效應與東亞污染出流之影響。國立中央大學大氣物理研究所碩士論文。
    蕭代基、張瓊婷,1999:臺灣四十年來空氣污染問題與對策。中研院社會問題研究推動委員會臺灣社會問題學術研討會論文。
    羅鈞、鄭玫芩、陳怡伶,2018:我國固定污染源細懸浮微粒(PM2.5)排放特性之研究分析。中興工程,140,47-62。

    Agency for Toxic Substances and Disease Registry(ATSDR), Division of Toxicology ToxFAQsTM, 2002: NITROGEN OXIDES (nitric oxide, nitrogen dioxide, etc.). Retrieved October 25, 2020, from http://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=396&tid=69.
    Audran, G., S. Marque, and M. Santelli, 2018: Ozone, chemical reactivity and biological functions. Tetrahedron, 74(43), 6221-6261.
    Arshinova, V. G., B. D. Belan, V. A. Lapchenko, E. V. Lapchenko, T. M. Rasskazchikova, D. E. Savkin, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, 2019: Changes in Surface Ozone Concentration during Precipitation. Atmospheric and Oceanic Optics, 32(6), 671-679.
    Buchholz, R. R., C. P. Walsh, D. W. T. Griffith, D. Kubistin, C. Caldow, J. A. Fisher, N. M. Deutscher, G. Kettlewell, M. Riggenbach, R. Macatangay, P. B. Krummel, and R. L. Langenfelds, 2016: Source and meteorological influences on air quality(CO, CH4 & CO2) at a Southern Hemisphere urban site. Atmospheric Environment, 126, 274-289.
    CAMEO Chemicals, 2010: Chemical datasheet –Sulfur Dioxide. Retrieved November 11, 2020, from https://cameochemicals.noaa.gov/chemical/1554.
    Carslaw, D. C., 2005: Evidence of an increasing NO2/NOx emissions ratio from road traffic Emissions. Atmospheric Environment, 39(26), 4793-4802.
    Chang, S.-Y., C.-T. Lee, C.-K. Chou, S.-C. Liu, and T.-X. Wen, 2007: The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan. Atmospheric Environment, 41(9), 1936-1949.
    Chen, T.-F., K.-H. Chang, and C.-Y. Tsai, 2014: Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels. Atmospheric Environment, 89, 1-9.
    Cheng, M.-T., W.-C. Chou, C.-P. Chio, S.-C. Hsu, Yi-Ru Su, P.-H. Kuo, B.-J. Tsuang, S.-H. Lin, and C.-K. Chou, 2008: Compositions and source apportionments of atmospheric aerosol during Asian dust storm and local pollution in central Taiwan. Atmos Chem, 61, 155–173.
    Cheng, W.-L., 2002: Ozone distribution in coastal central Taiwan under sea-breeze conditions. Atmospheric Environment, 36(21), 3445-3459.
    Chiang, C.-K., J.-F. Fan, J. Li, and S. Chang, 2009: Impact of Asian continental outflow on the springtime ozone mixing ratio in northern Taiwan. Journal of Geophysical Research Atmospheres, 114(D24).
    Chou, C.-K., S.-C. Liu, C.-Y. Lin, C.-J. Shiu, and K.-H. Chang, 2006: the trend of surface ozone in Taipei, Taiwan,and its causes: Implications for ozone control strategies. Atmospheric Environment, 40, 3898-3908.
    Chuang, M.-T., P.-C. Chiang, C.-C. Chan, C.-F. Wang, E.-E. Chang, and C.-T. Lee, 2008: The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Sci Total Environ, 399(1-3), 128-46.
    Costa, M., and J.M. Baldasano, 1996: Development of a source emission model for atmospheric pollutants in the Barcelona area. Atmospheric Environment, 30(2), 309-318.
    Dawn, R. S., F. Song, and Y. Gao, 2012: Seasonal characteristics of ambient nitrogen oxides and ground-level ozone in metropolitan northeastern New Jersey. Atmospheric Pollution Research, 3(2), 247-257.
    Debnath, B., and G. J. Ahammed, 2020: Effect of Acid Rain on Plant Growth and Development: Physiological and Molecular Interventions. Contaminants in Agriculture, 103-114.
    Du, Y.-X., X.-H. Xu, M. Chu, Y. Guo, and J.-H. Wang, 2016: Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease, 8, 8-19.
    Fukui, E., 1977: The Climate of Japan. Elsevier, New York,1977.
    Garthwaite, R., D. Fowler, D. Stevenson, P. Cox, M. Ashmore, P. Grennfelt, M Amann, R. Anderson, et al., 2008: Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science Policy, 15(8), 132.
    Geng, F., Q. Zhang, X. Tie, M. Huang, X. Ma, Z. Deng, Q. Yu, J. Quan, and C. Zhao, 2009: Aircraft measurements of O3, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region. Atmospheric Environment, 43(3), 584-593.
    Harrison, R. M., A. R. Deacon, M. R. Jones, and R. S. Appleby, 1997: Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham(U.K.). Atmospheric Environment, 31(24), 4103-4117.
    Hu, X., Y. Zhang, Z.-H. Ding, T.-J. Wang, H.-Z. Lian, Y.-Y. Sun, and J.-C. Wu, 2012: Bioaccessibility and health risk of arsenic and heavy metals(Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn)in TSP and PM2.5 in Nanjing. China. Atmospheric Environment, 57, 146-152.
    Iqbal, S., J. H. Clower, S. A. Hernandez, S.A. Damon, and F. Y. Yip, 2012: A review of disaster-related carbon monoxide poisoning: surveillance, epidemiology, and opportunities for prevention. Am J Public Health, 102, 1957-1963.
    Kartal, S., and U. ?ze, 2011: Determination and Parameterization of Some Air Pollutants as a Function of Meteorological Parameters in Kayseri, Turkey. Journal of the Air & Waste Management Association, 48(9), 853-859.
    Koenig, J. Q., 2000: Health Effects of Sulfur Oxides: Sulfur Dioxide and Sulfuric Acid. Health Effects of Ambient Air Pollution. Health Effects of Ambient Air Pollution, 99-114.
    Ku, T.-T., M.-J. Chen, B. Li, Y. Yun, G.-K. Lia, and N. Sang, 2017: Synergistic effects of particulate matter (PM2.5)and sulfur dioxide(SO2)on neurode generation via the microRNA-mediated regulation of tau phosphorylation. Toxicology Research, issue1, 2017.
    Lagidze, L., L. Matchavariani, D. Svanadze, and G. Khomasuridze, 2019: Influence of meteorological factors on ecological conditions of the atmosphere in Tbilisi, Georgia. Journal of Environment Biology Special issue, 41, 391-395.
    Lai, I.-C., 2010: The relationship between tropospheric ozone and atmospheric circulation in Taiwan. A dissertation submitted for the degree of Doctor of Philosophy(Climatic Research Unit, School of Environment Sciences,University of East Anglia).
    Langematz, U., 2019: Stratospheric ozone: down and up through the Anthropocene. ChemTexts, 5(8).
    Levy, R. J., 2015: Carbon Monoxide Pollution and Neurodevelopment: A Public Health Concern. Neurotoxicology and Teratology, 49, 31-40.
    Lin, C.-Y., C.-S. Liu, C.-K. Chou, S.-J. Huang, C.-M. Liu, C.-H. Kuo, and C.-Y. Young, 2005: Long –range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment, 39, 6066-6076.
    Lin, C.-Y., Z.-F. Wang, C.-K. Chou, C.-C. Chang, and S.-C. Liu, 2007: A numerical study of an autumn high ozone episode over southwestern Taiwan. Atmospheric Environment 41(17), 3684-3701.
    Logan, J. A., 1985: Tropospheric Ozone: Seasonal Behavior, Trends & Anthropogenic Inflence. Jornal of Geophysical Research, 90(D6), 10463-10482.
    McCormick, R. A., and C. Xintaras, 1961: Variation of Carbon Monoxide Concentratios as Related to Sampling Interval, Traffic and Meteorological Factors. Journal of Applied Meteorology and Climatology, 1(2), 237-243.
    Meng, Z.-Q., G.-H. Qin, B. Zhang, and J.-L. Bai, 2004: DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis, 19(6), 465-8.
    NASA, 2018: NASA earth observatory –Carbon Monoxide. Retrieved November 2, 2020, from https://earthobservatory.nasa.gov/global-maps/MOP_CO_M.
    National Research Council(NRC), 2002: The Ongoing Challenge of Managing Carbon Monoxide Pollution in Fairbanks, Alaska: Interim Report. National Academy Press.
    Ocak, S., and F. S. Turalioglu, 2008: Effect of Meteorology on the Atmospheric Concentrations of Traffic Related Pollutants in Erzurum, Turkey. J. Int Environmental Application & Science, 3(5), 325-335.
    Ogawa, T., and A. Miyata, 1985: Seasonal variation of the Tropospheric Ozone: A summer Mininum in Japan. Journal of the Meteorological Society of Japan, 63(5), 937-946.
    Pancholi, P., A. Kumar, D. S. Bikundia, and S. Chourasiya, 2018: An observation of seasonal and diurnal behavior of O3–NOx relationships and local/regional oxidant (OX = O3 + NO2)levels at a semi-arid urban site of western India. Sustainable Environment Research, 28(2), 79-89.
    Pan, X.-C. 2019: Encyclopedia of Environmental Health (Second Edition), Volume5, Elsevier, 2019.
    Predrag, I., D. N. Marki?, L. S. Bjeli?, 2018: Variation concentration of sulfur dioxide and correlation with meteorological parameters. Archives for Technical Sciences 2018, 18(1), 81-88.
    Pudasainee, D., B. Sapkotab, M. L. Shrestha , A. Kaga, A. Kondo, and Y. Inoue, 2006: Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmospheric Environment, 40(40), 8081-8087.
    Stanners, D., P. Bourdeau, N. Behrman, and C. Richmond, 1995: Europe's environment: the Dobris assessment. European Environment Agency (EEA).
    USEPA, 2000: EPA Quality Manual for Environmental Programs(EPA 5360 A1). Washington, DC.
    USEPA, 2016: Basic Information about NO2. Retrieved October 9, 2020, from https://www.epa.gov/no2-pollution/basic-information-about-no2#What%20is%20NO2.
    USEPA, 2018: Particulate Matter Emissions-report on the environment. Retrieved October 5, 2020, from https://www.epa.gov/roe/.
    Wang, J., and S. Ogawa, 2015: Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int J Environ Res Public Health 2015, 12(8), 9089-9101.
    WHO, 2018: Ambient (outdoor) air pollution. Retrieved October 9, 2020, fromhttps://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
    World Resources Institute(WRI), 1998: World Resources 1998-99: Environmental change and human health. A joint publication by the World Resources Institute, the United Nationas Environment Programme, the United Nations Development Programme, and The World Bank.
    Xie, Y.-Y., B. Zhao, L. Zhang, and R. Luo, 2015: Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology, 20, 141-149.
    Yates, T. J. S., A. T. Coote, and R. N. Butlin, 1988: The effect of acid deposition on buildings and building materials. Construction and Building Materials, 2(1), 20-26.

    下載圖示
    QR CODE