簡易檢索 / 詳目顯示

研究生: 羅漢傑
Lo, Han-Chieh
論文名稱: 鉍接觸電極旋轉角度在二硫化鉬場效電晶體的導電度相依性探討
Angle-Dependent Conductivity in MoS2 Field-Effect Transistors with Bi Contacts
指導教授: 藍彥文
Lan, Yann-Wen
口試委員: 藍彥文
Lan, Yann-Wen
劉明豪
Liu, Ming-Hao
趙宇強
Chao, Yu-Chiang
柯忠廷
Ke, Chung-Ting
口試日期: 2024/07/25
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 45
中文關鍵詞: 二維材料接觸工程旋轉角度過渡金屬硫化物
英文關鍵詞: two-dimensional material, contact engineering, twist angle-dependent, transition-metal dichalcogenides
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401872
論文種類: 學術論文
相關次數: 點閱:63下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在二維材料層與層間堆疊角度開展一個全新自由度來調控載子傳輸特性,顯示異質結構間的堆疊角度在追求更好的載子遷移率扮演至關重要的角色。同時,在電晶體接觸工程方面也展示了在半金屬鉍(Bi)在二硫化鉬(MoS2)場效應晶體管(FETs)中實現超低接觸電阻的顯著突破。基於這些研究基礎上,我們進一步探討以鉍金屬做為接觸電極的二硫化鉬電晶體,藉由旋轉鉍電極與二硫化鉬的接觸角度,研究導電率(conductivity)隨接觸角度的差異性。
    透過我們的研究顯示,導電率與接觸電極的旋轉角度改變呈現連續變化,在0°時達到最高點,並隨著接觸角度增加而導電率降低,在30°處達到最低點。這種趨勢在載子遷移率(Mobility)中也有所體現,最佳接觸角度時,載子遷移率幾乎增加一倍,且此現象與3-band tight binding理論模擬結果呈現一致的結果,顯示不同接觸電極角度情況下,在材料傳輸方向會具有不同的穿透率,進而導致電子特性隨接觸電極角度有所變化。此外,我們也進一步對於不同二硫化鉬晶格方向電子傳輸特性的探討,結果顯示,不論是Zigzag(ZZ)或是Armchair(AC)方向,導電率與載子遷移率均無顯著差異,顯示在二硫化鉬中不同晶格方向間的傳輸等向性。這項研究的意義延伸至通過精確管理材料之間晶格失配來提升器件性能的潛力,有望顯著提高計算速度和工作效率,為異質集成電路提供了廣闊的前景。

    In recent years, the interlayer stacking angle of two-dimensional (2D) materials has been identified as a critical parameter for modulating carrier transport properties, demonstrating its importance in optimizing carrier mobility in heterostructures. Concurrently, advancements in transistor contact engineering have shown that semi-metal bismuth (Bi) can achieve ultra-low contact resistance in molybdenum disulfide (MoS2) field-effect transistors (FETs).
    Building on this foundation, we investigated MoS2 transistors with Bi metal contacts, examining conductivity variations with different rotational angles of the Bi electrodes relative to the MoS2. Our results indicate that conductivity peaks at 0° and decreases with increasing contact angle, reaching a minimum at 30°. This trend is also reflected in carrier mobility, which nearly doubles at the optimal angle. These findings align with 3-band tight-binding theoretical simulations, suggesting that different contact angles alter transmission probabilities within the material, affecting its electronic properties.
    Additionally, our exploration of electronic transport properties along different lattice directions of MoS2 revealed no significant differences in conductivity and mobility between the Zigzag (ZZ) and Armchair (AC) directions, indicating isotropic transport. This research highlights the potential for enhancing device performance through precise control of lattice mismatches, offering promising prospects for heterogeneous integrated circuits and improved power efficiency and computational speed.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 第一章 緒論 1 1.1 二維材料的發展與應用 1 1.2 過渡金屬二硫屬化物(TMDs)之基本特性 2 1.3 研究動機 4 第二章 理論與文獻回顧 5 2.1 二硫化鉬之材料分析 5 2.1.1 拉曼光譜學 (Raman Spectrum) 5 2.1.2 光致發光光譜學 (Photoluminunesence, PL) 6 2.2 二硫化鉬場效電晶體特性 7 2.2.1 電晶體特性 (Transistor) 7 2.3 元件設計與機制 8 2.3.1 歐姆接觸(Ohmic contact) 8 2.3.2 蕭特基能障(Schottky Barrier Height, SBH) 9 2.4 理論模擬基礎 10 2.4.1 三能帶緊束縛模型(3-band Tight-binding Model) 10 第三章 實驗儀器介紹 12 3.1 製程儀器 12 3.1.1 旋轉塗佈機 (Spin Coater) 12 3.1.2 微影系統 12 3.1.3 熱蒸鍍機 (Thermal Evaporator) 13 3.1.4 電漿機 (Plasma Machine) 14 3.1.5 掃描式電子顯微鏡 (Scanning Electron Microscope) 15 3.1.6 電性量測系統 (Electrical Measurement System) 16 3.1.7 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 17 3.2 製程流程 (Process Flow) 19 3.2.1 二硫化鉬直接成長 (Directly Growth) 19 3.2.2 製作標準晶片 (Standard Chip Fabrication) 19 3.2.3 濕式轉移二硫化鉬(Wet Transfer) 20 3.2.4 圖案設計及電極製作 (Pattern Design) 22 第四章 結果與討論 25 4.1 材料分析結果 25 4.1.1 單層二硫化鉬之拉曼光譜學分析 25 4.1.2 光致發光光譜學分析 25 4.2 單層二硫化鉬電晶體特性分析 27 4.2.1 三端電性量測及元件特性 27 4.2.2 旋轉電極角度定義 28 4.2.3 旋轉電極角度電晶體之效能比較 30 4.2.4 旋轉通道材料角度電晶體之效能比較 33 4.3 機制討論 35 4.3.1 電極旋轉角度與蕭特基能障關係探討 35 4.3.2 鉍金屬電極旋轉角度與二硫化鉬晶格排列探討 38 4.3.3 電極旋轉角度與穿透率模擬探討 40 第五章 結論與未來展望 43 參考文獻 44

    K. S. Novoselov, A. K. Geim, et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306,666-669
    B. Radisavljevic, A. Radenovic, et al. Single-layer MoS2 transistors. Nature Nanotechnology volume 6, 2011. p. 147–150
    Jariwala, D., V.K. Sangwan, C.-C. Wu, et al., Gate-tunable carbon nanotube–MoS2 heterojunction pn diode. Proceedings of the National Academy of Sciences, 2013. 110(45): p. 18076-18080.
    Darsith Jayachandran, Rahul Pendurthi, et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature volume 625, 2024. p. 276–281.
    Tilo H. Yang, et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nature Electronics volume 7, 2024 p.29–38.
    Shrivastava, M. and V. Ramgopal Rao, A roadmap for disruptive applications and heterogeneous integration using two-dimensional materials: State-of-the-art and technological challenges. Nano Letters, 2021. 21(15): p. 6359-6381
    Vo Pham Hoang Huy, et al. Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. Nanomaterials 2021, 11(6), 1517.
    Omnia Samy, et al. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals 2021, 11(4), 355.
    Kyounghwan Kim, et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. PNAS March 14, 2017. 114 (13) 3364-3369.
    Mengzhou Liao, et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nature Communications volume 9, 2018. Article number: 4068.
    Shen, P.-C., C. Su, Y. Lin, et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211-217.
    Sara Mosca, et al. Spatially offset Raman spectroscopy. Nature Reviews Methods Primers volume 1, Article number: 21 (2021)
    Krystyna Schneider. Optical properties and electronic structure of V2O5, V2O3 and VO2. Materials in Electronics (2020) 31:10478–10488.
    Chen, P.-C., C.-P. Lin, C.-J. Hong, et al., Effective N-methyl-2-pyrrolidone wet cleaning for fabricating high-performance monolayer MoS2 transistors. Nano Research, 2019. 12: p. 303-308.
    Zhihui Cheng, Chin-Sheng Pang, et al. How to Report and Benchmark Emerging Field-Effect Transistors. Nature Electronics volume 5, pages416–423 (2022).
    Shu-Ting Yang, Tilo H. Yang, et al. Submicron Memtransistors Made from Monocrystalline Molybdenum Disulfide. ACS Nano 2024, 18, 9, 6936–6945.
    El-Kareh, B., Hutter, L.N. (2020). Rectifying and Ohmic Contacts. In: Silicon Analog Components.
    Gui-Bin Liu, Wen-Yu Shan, et al. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433, 2013.
    Samad, M.I., Nayan, N., Bakar, A.S. et al. Aluminium Thin Film Surface Modification via Low-Pressure and Atmospheric-Pressure Argon Plasma Exposure. J. Surf. Investig. 16, 421–426 (2022).
    Naresh Marturi. Vision et asservissement visuel pour la nanomanipulation et la nanocarectérisation sous microscope électronique à balayage. Micro and nanotechnologies/Microelectronics. Universit´e de Franche-Comt´e, 2013
    Israa Meften Hashim. Engineering Nanostructured Electrode Composites as High Performance Anode Materials -for Lithium Ion Batteries, 2021.

    下載圖示
    QR CODE