簡易檢索 / 詳目顯示

研究生: 王志傑
論文名稱: 平面二次與三次曲線的希爾伯特方程式
Hilbert-Kunz Functions of Plane Conic And Cubic Curves
指導教授: 洪有情
Hung, Yu-Ching
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
中文關鍵詞: 希爾伯特方程式
英文關鍵詞: Hilbert-Kunz functions, plane curves
論文種類: 學術論文
相關次數: 點閱:197下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要探討二次與三次平面曲線的希爾伯特方程式

    Let k be an algebraic closed field, is the polynomial ring, q is a power of the characteristic p of the field k. If is a homogeneous form, then we define the Hilbert-Kunz function of to be the dimension of the vector space .
    In this article, I classify the various cases of the projective conic and cubic plane curves, and determine their Hilbert-Kunz functions mainly by means of Gröebner bases. Some cubic cases are more complicated, so another strategy is applied.

    1.Introduction 2.Groebner Bsases 3.The Conic Case 4.Some Cubic Case 5.The Irreducible Cubic Case

    Some thesis of Hlibert-Kunz functions

    QR CODE