研究生: |
王志傑 |
---|---|
論文名稱: |
平面二次與三次曲線的希爾伯特方程式 Hilbert-Kunz Functions of Plane Conic And Cubic Curves |
指導教授: |
洪有情
Hung, Yu-Ching |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 英文 |
中文關鍵詞: | 希爾伯特方程式 |
英文關鍵詞: | Hilbert-Kunz functions, plane curves |
論文種類: | 學術論文 |
相關次數: | 點閱:254 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文主要探討二次與三次平面曲線的希爾伯特方程式
Let k be an algebraic closed field, is the polynomial ring, q is a power of the characteristic p of the field k. If is a homogeneous form, then we define the Hilbert-Kunz function of to be the dimension of the vector space .
In this article, I classify the various cases of the projective conic and cubic plane curves, and determine their Hilbert-Kunz functions mainly by means of Gröebner bases. Some cubic cases are more complicated, so another strategy is applied.
Some thesis of Hlibert-Kunz functions