簡易檢索 / 詳目顯示

研究生: 劉雅雯
Liu, Ya-Wen
論文名稱: 以臺灣社群聆聽產業之剖析 探究大數據分析的侷限及倫理問題
Exploring the Limitations and Ethical Issues of Big Data by Analyzing Taiwan Social Listening Industry
指導教授: 王維菁
學位類別: 碩士
Master
系所名稱: 大眾傳播研究所
Graduate Institute of Mass Communication
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 155
中文關鍵詞: 大數據巨量資料社群聆聽大數據偏見大數據鴻溝數據倫理
英文關鍵詞: Social listening, Data bias, Data divide, Data ethics
DOI URL: http://doi.org/10.6345/NTNU202000127
論文種類: 學術論文
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大數據(big data)為近幾年來最受寵的技術之一,任何產品只要冠上「大數據」三字,便如同站在科技端的最前線,各界紛紛試圖利用這項技術來挖掘具有價值的訊息,然大數據在現今的社會裡被過度炒作,甚至成為一種迷思,外界甚少了解大數據本質,以及其實際的運作流程。其中大數據應用藍圖裡,隨著巨量資料和社群媒體熱絡發展,因而快速竄紅的社群聆聽,成為一種新興產業與研究工具,其橫跨科技與社會人文科學的特徵,讓該產業的發展過程、面臨之挑戰與侷限,成為得以反映大數據與現今社會關係的縮影。

    因此,本研究採取深度訪談法,訪問9位社群聆聽的內部工作者,以透過分析台灣社群聆聽產業,探究整個大數據環境與社會、政經及倫理面向所交織的意義及影響,同時檢視社群聆聽大數據現階段之發展、面臨的困境與挑戰。

    本研究結果發現,大數據在爬蟲、建模、清洗,以及分析等步驟上仍具有一定程度的誤差,研究過程也會因數據工作者的專業度、社會洞察力、個人意識形態等人為變因,而存有數據結果偏差的疑慮,且大數據並非適合所有研究命題,必須搭配其他研究方法和資料相輔相成,增加研究精準度。而大多數的數據掌握在少數的企業上,形成數據獨裁的現象,互不通聯的數據猶如數據孤島,成為阻礙大數據發展的一面高牆。另外,社會大眾對大數據分析具有不正確的遐想,並呈現資訊落差的情況,被炒作的大數據熱潮讓人們試圖以大數據量化所有具象的、抽象的物質,然並非所有的事物都可以被數據化,大數據受到科技追逐賽以及市場導向的干擾,早已扭曲反映社會的初衷,成為了影響社會走向的工具。

    隨著大數據發展相繼產生之資安洩漏、非法數據交易、數據侵權等問題,在台灣未設有大數據專法的情況下,僅能以現階段的其他法規進行約束,但未臻完善的規範仍具有律法無法觸及之處,數據工作者只能遵從自律原則、恪守工作倫理,但在以商業利益為導向的數據產業中,大數據倫理綱要難以得到共識與發展,巨量數據的使用規範與倫理約束也不該僅侷限於數據使用者或相關從業人員,正確的觀念與知識應該同時落實於社會,因科技所產生之問題,必須依靠社會整體的集體意識共同努力,而非單方面的檢討與限制。

    Big data is one of the most inexorably trending technologies in recent years. Products become avant-garde as they are claimed to use data science. Every segment of society has scrambled for big data making it overhyped and a kind of myth. In other words, the masses know little about the nature of big data and its actual operation process. Besides, among data industries, social listening rapidly draws attention with the rise of big data and social media. It has been all the rage in academia and business industries. The multidisciplined characteristics of social listening which include science and social humanities making it a suitable microcosm to reflect the problems and challenges between our modern society and data universe.

    Therefore, the in-depth interview is adopted in this research to interview 9 internal workers in social listening enterprises, trying to figure out the aspects of ethical issues, dilemmas and challenges striking against the social listening industry. Meanwhile by analyzing the interview results, the phenomenon of how the entire data environment has impacted on our society is concernedly discussed.

    The study findings show that it has a certain degree of error and biases in the procedures of data crawling, data modeling, data cleaning, and data analysis. The outcome of data researches would be subject to variations like data workers’ professionalism, abilities to social insights, personal ideology and so on. Additionally, being a research method, big data doesn’t fit in all research propositions. It must also be complemented by other research methods or information to enhance research accuracy. Most of the data is held by a few companies which means data dominance and fragmented data are hindering technology from moving forward. Moreover, the masses usually have incorrect reveries about big data revealing the severe information divide. People try to quantify everything with big data, but not everything can be digitized. Affected by technology race and market-oriented interference, the intention of big data to reflect society has been distorted. Big data has become a tool that influences the society.

    With the development of big data, there have been problems such as security leaks, privacy issues, illegal data transactions, and data infringement. In the absence of data protections in Taiwan, related issues can only be restricted by other existing regulations. However, the incomplete binding rules are not comprehensive. Self-discipline becomes crucial for every data worker. Nevertheless, data ethics framework is hard to implement in data industries oriented by business interests. Instead of restraining data industries unilaterally, it is ideal to educate the masses on big data and work together on problems resulting from the emerging technology.

    謝辭 i 摘要 ii Abstract iv 目錄 vi 表目錄 vii 圖目錄 viii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究動機 5 第三節 研究目的與問題 10 第貳章 文獻探討 11 第一節 大數據的基本定義 11 第二節 大數據的應用方向 22 第三節 社群聆聽與大數據分析流程 27 第四節 大數據模型與演算法的限制、不透明性 31 第五節 大數據偏見 38 第六節 大數據樣本的品質落差 45 第七節 大數據的個資問題及侵權疑慮 54 第八節 大數據鴻溝與倫理問題 63 第參章 研究方法 68 第一節 研究流程與架構 68 第二節 研究方法 70 第三節 研究對象與研究設計 71 第肆章 研究分析 78 第一節 社群聆聽產業結構及定位 78 第二節 社群聆聽實作流程與分析 83 第三節 外界對社群聆聽之迷思 92 第四節 資料分析的挑戰與矛盾 96 第五節 社群聆聽的法律疑慮 113 第六節 社群聆聽發展侷限與未來趨勢 117 第伍章 結論與建議 127 第一節 研究發現及討論 127 第二節 研究限制與未來建議 139 參考文獻 141

    中文部分:
    INSIDE 硬塞的網路趨勢觀察(2017.09.21)。不是爬蟲!IBM AI 輿情平台「Watson Analytics for Social Media」繁中上線。上網日期,2019年1月1日。取自https://www.inside.com.tw/article/10586-ibm-watson-analytics-for-social-media
    中華人民共和國(2014)。《社會信用體系建設規劃綱要》。上網日期,2019年1月22日。取自http://www.gov.cn/zhengce/content/2014-06/27/content_8913.htm
    王琍瑩(2018.05.22)。歐盟高規格 GDPR 數據保護法上路,AI 新創該如何應對?Inside。2019年1月1日。取自https://www.inside.com.tw/article/12978-eu-gdpr
    王豐勝、黃彥文(2013)。Big Data時代啟示錄 ─ 雲端巨量資料的國際潮流與產業需求。經濟前瞻,146,123-128。
    任然(2018年5月22日)。可解釋的人工智慧:讓機器解釋自己,減少演算法產生的偏見。雷鋒網。上網日期,2019年1月1日。取自https://www.leiphone.com/news/201805/HwjzMIUfOhDVEq4v.html
    朱弘川(2019.01.31)。人工智慧在新聞編輯室的應用與道德風險。財團法人卓越新聞獎基金會。上網日期,2019年1月22日。取自https://www.feja.org.tw/44390?fbclid=IwAR0ISfSogMr9l4YVBBwhf4upKv9yIqrbria7ioY7hxaM-WY9vePjuw9B5CM
    行政院國家發展委員會(2018)。歐盟GDPR簡介。上網日期,2019年1月22日。取自https://www.ndc.gov.tw/Content_List.aspx?n=49C4A38DD9249E3E
    李欣宜(2015.04.02)。一次搞懂大數據(下)。數位時代。上網日期,2019年1月1日。取自https://www.bnext.com.tw/article/35809/bn-2015-03-31-153046-36
    李宜杰(2018.01.03)。「找到屍體了!」 美國網紅嬉鬧訪「自殺森林」硬凹關注自殺議題。上報。上網日期,2019年11月17日。取自https://www.upmedia.mg/news_info.php?SerialNo=32646
    李國安(2017)。大數據分析的未來發展。國家實驗研究院科技政策研究與資訊中心。
    李麗莉(2019)。健保資料庫在大數據時代面臨個資保護問題之探討。立法院。上網日期,2019年12月28日。取自https://www.ly.gov.tw/Pages/Detail.aspx?nodeid=6590&pid=179126
    汪志堅、戴敏育、陳建彰、林昱叡、劉家瑋(2018)。網軍虛假網路口碑的分析與偵測:行為分析、社會網絡、語音分析、人工智慧偵測。TANET2018臺灣網際網路研討會,1416-1421。
    沈艷(2016)。大資料分析的光榮與陷阱—從谷哥流感趨勢談起。互聯網前沿,32。上網日期,2019年1月1日。取自http://www.tisi.org/4456_50
    林俊宏(譯)(民 102)。大數據(原作者:Mayer-Schönberger, V. & Cukier, K.)。臺北市:天下文化。(原著出版年:2013)
    林俊宏(譯)(民107)。大數據資本主義。(原作者:Mayer-Schönberger, V. &
    Ramge, T.)。臺北市:天下文化。(原著出版年:2018)
    林昱叡(2016)。這是業配文嗎?網軍的貼文型態與網絡分析(未出版之碩士論文)。國立台北大學,台北市。
    施典志(2018.11.2)。我看 Flickr 取消免費 1TB 空間。上網日期,2019年1月1日。取自https://medium.com/tenzblog/flickr-cancelled-1tb-free-space-793b346529b5
    范麗娟(1994)。深度訪談簡介。戶外遊憩研究,,7(2),25-35。
    徐寧(2018)。論大數據時代資料蒐集之智慧財產法與競爭法爭議—以網路爬蟲技術為中心。政治大學科技管理與智慧財產研究所學位論文,1-140。
    孫飛飛、張淇人(2012)。APP刷榜黑幕調查。IT時代週刊,(5),28-34。
    涂子沛(民104)。數據之巔:大數據革命,歷史、現實與未來。香港:中和出版。
    張文貴(2013)。積極面對 [大數據] 時代的變革趨勢。 品質月刊, 49(11),7-11。
    許華孚、吳吉裕(2015)。大數據發展趨勢以及在犯罪防治領域之應用。刑事政策與犯罪研究論文集,341-375。
    許瑞宋(譯)(民 106)。大數據的傲慢與偏見(原作者:Cathy O’Neil)。臺北市:大寫。(原著出版年:2017)。
    陳百齡、鄭宇君、陳恭(2016)。社群媒體資料分析:特性和歷程的初探。傳播文化,(15)。
    陳愷新(2017)。大數據持續升勢,經驗法則正轉軌「智能法則」。SAS Insights。上網日期,2019年1月1日。取自https://www.sas.com/
    zh_tw/insights/articles/big-data/big-data-artificial-intelligence.html
    陳燕玲、陶聖屏(2015)。新聞事件之網路模因研究:探討洪仲丘案所引起的網路謠言傳播。復興崗學報,(106),43-68。
    陳譽晏(2015)。 運用R Shiny建立文字探勘平台之語意分析及輿情分析。Journal of Data Analysis,10(6),51-78。
    傅文成(2018)。從社會信用評級系統看大陸大數據治理運用。展望與探索,16(5)。
    彭金隆、陳俞沛、孫群(2017)。巨量資料應用在台灣個資法架構下的法律風險。臺大管理論叢,27(2S),93-118.
    黃淑玲(2019.01.22)。Google被法國重罰5,680萬美元 歐盟新個資法第一個祭品。經濟日報。上網日期,2019年1月22日。取https://money.udn.com/money/story/5599/3607042
    黃錦輝(2017.03.23)。「大數據」分析局限乃傳統統計學問題。傳媒透視。上網日期,2019年1月1日。取自https://app3.rthk.hk/ediadigest/ontent.php? id=2105
    黃耀漢(2018.03.25)。陸將為人民打分數「低等」人民禁買火車、機票。TVBS NEWS。上網日期,2019年1月22日。取https://news.tvbs.com.tw/world/890049
    萬文隆(2004)。深度訪談在質性研究中的應用。生活科技教育月刊。
    葉志良(2016)。大數據應用下個人資料定義的檢討:以我國法院判決為例。資訊社會研究,31,1-36。
    葉雲卿(2018)。淺談Webcrawler網路爬蟲合法性--以美國訴訟案為討論中心。
    北美智權報,(214)。上網日期,2019年11月30日。取自http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Infringement_Case/IPNC_180627_0501.htm
    鄭宇君(2014)。向運算轉:新媒體研究與資訊技術結合的契機與挑戰。傳播研究與實踐,4(1),67-83。
    鄭宇君(2016)。社交媒體之雙重性:人的連結與技術的連結。傳播文化與政治,(4),1-25。
    鄭宇君(2017)。探討社交媒體事件之浮現邏輯:一個融合STS與傳播研究取徑之嘗試。中華傳播學刊,(32),129-164。
    劉慧茹(2019)。《我們與惡的距離》大數據首例 呂蒔媛、林昱伶巨量田調動心弦。鏡週刊。上網日期,2019年11月30日。取自
    https://www.mirrormedia.mg/story/20190318insight002/
    蔡雅欣(2017)。臺灣大數據論文研究之現況分析(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    盧安邦、鄭宇君(2017)。用方法說故事:探析電腦輔助文本分析工具在框架研究之應用。傳播研究與實踐,7(2),145-178。
    蕭閔云(2019.01.11)。拚到頭髮都白了!鴻海子公司富盈數據贏得波波黛莉青睞。數位時代。上網日期,2019年1月11日。取自https://www.bnext.com.tw/article/51913/breaktimemachinelearningfbclid=IwAR2TyyJ782CS4Kl2Ch5pLBoQtcBtB2d6AaZlR1qQsIj2DwFbgo5EBbIU4Y
    戴允強、廖佩珊(2016)。淺談大數據, 統計資訊分析與統計學習在臺灣金融服務業的運用。Journal of Data Analysis, 11(1), 27-44.
    龍建宇(2018)。不想被Google不行嗎?——被遺忘權與言論自由的權衡。上網日期,2019年12月28日。取自https://opinion.udn.com/opinion/story/10043/3326184
    羅鈺珊(2018)。數據經濟下共融成長的挑戰:大數據的兩面刃.。經濟前瞻,178,87-93。

    英文部分:
    Abiteboul, S. (1997). Querying semi-structured data. In International Conference on Database Theory (pp. 1-18). Springer, Berlin, Heidelberg.
    Anderson, C. (2008, June 23). The End Of Theory: The Data Deluge Makes The Scientific Method Obsolete. Wired. Retrieved from https://www.wired.com/2008 /06/pb-theory/(accessed 1 January 2019)
    Andrejevic, M. (2014). Big data, big questions| the big data divide. International Journal of Communication, 8, 17.
    Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016 May 23). Machine Bias. ProPublica. Retrieved from https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (accessed 1 January 2019)
    Arthur, L. (2013, August 15). What is Big Data? Frobes. Retrieved from http://www.forbes.com/sites/lisaarthur/2013/08/15/what-is-bigdata/ (accessed 1 January 2019)
    Beer, D. (2009). Power through the algorithm? Participatory web cultures and the technological unconscious. New Media & Society, 11, 985-1002.
    Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achievements and new challenges. Information Fusion, 28, 45-59.
    Bijker, E., Hughes, P. & Pinch, J. (1989). The social construction of technological systems: New directions in the sociology and history of technology. MIT press.
    Bloem, J. W., van Doorn, M., Duivestein, S., van Manen, T., van Ommeren, E., & Sachdeva, S. (2013). No more secrets with big data analytics. Sogeti. Retrieved from https://www.ict-books.com/topics/nomoresecrets-pdf-info (accessed 1 January 2019)
    Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, 15(5), 662-679.
    Bühlmann, P., & van de Geer, S. (2018). Statistics for big data: A perspective. Statistics & Probability Letters, 136, 37-41.
    Busch, L. (2014). Big data, big questions| A dozen ways to get lost in translation: Inherent challenges in large scale data sets. International Journal of Communication, 8, 18.
    Chen, H., He, D., Zhu, S., & Yang, J. (2017, April). Toward detecting collusive ranking manipulation attackers in mobile app markets. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security (pp. 58-70). ACM.
    Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209.
    Chow-White, P. A., & Green Jr, S. (2013). Data Mining Difference in the Age of Big Data: Communication and the social shaping of genome technologies from 1998 to 2007. International Journal of Communication, 7, 28.
    Claverie-Berge, I. (2012). Solutions Big Data IBM. Retrieved from http://www05.ibm.com/fr/events/netezzaDM_2012/Solutions_Big_Data.pdf (accessed 1 January 2019)
    Cooper, H., Gallupe, B., Pollard, S. & Cadsby, J. (1998). Some liberating effect of anonymous electronic brainstorming. Small Group Research, 29, 147-178.
    Couldry, N., & Turow, J. (2014). Advertising, big data and the clearance of the public realm: marketers' new approaches to the content subsidy. International Journal of Communication, 8, 1710-1726.
    Cox, M., & Ellsworth, D. (1997, October). Application-controlled demand paging for out-of-core visualization. In Proceedings. Visualization'97 (Cat. No. 97CB36155) (pp. 235-244). IEEE.
    Crawford K. (2013, April 1). The hidden biases in big data. Harvard Business Review. Retrieved from https://hbr.org/2013/04/the-hidden-biases-in-big-data (accessed 1 January 2019)
    Crawford, K., Gray, M. L., & Miltner, K. (2014). Big Data| critiquing Big Data: Politics, ethics, epistemology| special section introduction. International Journal of Communication, 8, 10.
    Data Science Ethical Framework. (August 30, 2018). UK. Retrieved from https://www.gov.uk/government/publications/data-ethics-framework/data-ethics-framework (accessed 19 April 2019)
    Driscoll, K., & Walker, S. (2014). Big data, big questions| working within a black box: Transparency in the collection and production of big twitter data. International Journal of Communication, 8, 20.
    Dunson, D. B. (2018). Statistics in the big data era: Failures of the machine. Statistics & Probability Letters, 136, 4-9.
    Elliott, M. R., & Valliant, R. (2017). Inference for nonprobability samples. Statistical Science, 32(2), 249-264.
    Eubanks, V. (2014, January 15). Want to predict the future of surveillance? Ask poor communities. The American Prospect. Retrieved from http://prospect.org/article/want-predict-future-surveillanceask-poor-communities (accessed 1 January 2019)
    European Union. (2018). The EU General Data Protection Regulation. Retrieved from https://eugdpr.org/the-regulation (accessed 1 January 2019)
    Floridi, L. (2012). Big data and their epistemological challenge. Philosophy & Technology, 25(4), 435-437.
    Fung, K. (2013). Numbersense: How to use big data to your advantage. McGraw Hill Professional.
    Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International journal of information management, 35(2), 137-144.
    Gantz, J., & Reinsel, D. (2011). The 2011 digital universe study: Extracting value from chaos. IDC: Sponsored by EMC Corporation.
    Gelb, B. D., & Sundaram, S. (2002). Adapting to ‘word of mouse’. Business Horizons, 45(4), 21–25.
    Gomes, L. (2014, October 20). Machine-Learning Maestro Michael Jordan on the Delusions of Big Data and Other Huge Engineering Efforts. IEEE Spectrum. Retrieved from https://spectrum.ieee.org/robotics/artificial- intelligence/ machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts (accessed 1 January 2018)
    Graham, M. (2012, March 9). Big data and the end of theory? The Guardian. Retrieved from http://www.theguardian.com/news/datablog/2012/mar/09/big-data-theory (accessed 1 January 2019)
    Gupta, S., Kar, A. K., Baabdullah, A., & Al-Khowaiter, W. A. (2018). Big data with cognitive computing: a review for the future. International Journal of Information Management, 42, 78-89.
    Harford, T. (2014). Big data: A big mistake? Significance, 11(5), 14-19.
    Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information systems, 47, 98-115.
    He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data IEEE Transactions on Knowledge and Data Engineering v. 21 n. 9.
    Heather, K. (2018, Aug 21). Google's data collection is hard to escape, study claims. CNN Business. Retrieved from https://money.cnn.com/2018/08/21/technology/google-data-collection/index.html (accessed 28 December 2019)
    Hern, A. (2019, Apr 19). Facebook moves 1.5bn users out of reach of new European privacy law. The Guardian. Retrieved from https://www.theguardian.com/technology/2018/apr/19/facebook-moves-15bn-users-out-of-reach-of-new-european-privacy-law (accessed 19 April 2019)
    Huet, E. (2016, April 18). The Humans Hiding Behind the Chatbots. Bloomberg. Retrieved from https://www.bloomberg.com/news/articles/2016-04-18/the-humans-hiding-behind-the-chatbots (accessed 1 January 2019)
    Jacobs, A. (2009). The pathologies of big data. Communications of the ACM, 52(8), 36-44.
    Jagadish, H. V. (2015). Big data and science: Myths and reality. big Data research, 2(2), 49-52.
    Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M., Ramakrishnan, R., & Shahabi, C. (2014). Big data and its technical challenges. Communications of the ACM, 57(7), 86-94.
    Janssen, M., & Kuk, G. (2016). The challenges and limits of big data algorithms in technocratic governance.
    Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013, January). Big data: Issues and challenges moving forward. In 2013 46th Hawaii International Conference on System Sciences (pp. 995-1004). IEEE.
    Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: issues, challenges, tools and good practices. In 2013 Sixth international conference on contemporary computing (IC3) (pp. 404-409). IEEE.
    Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data: issues, challenges, tools and good practices. In 2013 Sixth international conference on contemporary computing (IC3) (pp. 404-409). IEEE.
    Koseleva, N., & Ropaite, G. (2017). Big data in building energy efficiency: understanding of big data and main challenges. Procedia Engineering, 172, 544-549.
    Kranzberg, M. (1986). Technology and History:" Kranzberg's Laws". Technology and culture, 27(3), 544-560.
    Kshetri, N. (2014). The emerging role of Big Data in key development issues: Opportunities, challenges, and concerns. Big Data & Society, 1(2), 2053951714564227.
    Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1.
    Latour, B. (2009). Tarde’s idea of quantification, The Social after Gabriel Tarde: Debates and Assessments, ed. M. Candea.
    Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google Flu: traps in big data analysis. Science, 343(6176), 1203-1205.
    Lee, M., & Youn, S. (2009). How eWOM platforms influence consumer product judgement. International Journal of Advertising, 28(3), 473-499.
    Li, H., Zhu, H., Du, S., Liang, X., & Shen, X. S. (2018). Privacy leakage of location sharing in mobile social networks: Attacks and defense. IEEE Transactions on Dependable and Secure Computing, 15(4), 646-660.
    Liu, J. (2017, December 10). In Your Face: China’s all-seeing state. BBC News. Retrieved from https://www.bbc.com/news/av/world-asia-china-42248056/in-your-face-china-s-all-seeing-state (accessed 1 January 2019)
    Lohr, S. (2012. February 11). The Age of Big Data. The New York Times. Retrieved from https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html (accessed 1 January 2019)
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity.
    Marr, Bernard. (2015 March). Why only one of the 5 Vs of big data really matters. IBM Big Data & Analytics Hub. Retrieved from https://www.ibmbigdatahub. com/blog/why-only-one-5-vs-big-data-really- matters
    Maugis, P. A. G. (2018). Big data uncertainties. Journal of forensic and legal medicine, 57, 7-11.
    Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt.
    Nakashima, R. (2018). APNewsBreak: Google clarifies location-tracking policy. Associated Press News. Retrieved
    from https://apnews.com/ef95c6a91eeb4d8e9dda9cad887bf211(accessed 28 December 2019)
    NHS Digital. National data opt-out Direction 2018. Retrieved from https://digital.nhs.uk/about-nhs-digital/corporate-information-and-documents/directions-and-data-provision-notices/secretary-of-state-directions/national-data-opt-out-direction-2018 (accessed 28 December 2019)
    Mills, K. A. (2018). What are the threats and potentials of big data for qualitative research?. Qualitative Research, 18(6), 591-603.
    Morgan, B. (2016, November 17). What Are Social Analytics? Forbes. Retrieved
    from https://www.forbes.com/sites/blakemorgan/2016/11/17/what-are-social-analytics/#1be928b458ee (accessed 1 January 2018)
    Naimi, A. I., & Westreich, D. J. (2014). Big data: a revolution that will transform how we live, work, and think.
    National Oceanic & Atmospheric Administration. (2017). Costliest mainland United States tropical cyclones 1900-2017 Unadjusted for inflation. Retrieved from https://www.aoml.noaa.gov/hrd/tcfaq/costliesttable.html (accessed 1 January 2019)
    Noland, R. (2012, February 21). Behind the cover story: How much does Target know? The New York Times. Retrieved from http://6thfloor.blogs.nytimes.com/2012/02/21/behind-the-cover-storyhow-much-does-target-know (accessed 1 January 2019)
    Ohlberg, M., Ahmed, S., & Lang, B. 2017. Central Planning, local experiments: the complex implementation of China’s Social Credit System. MERICS China Monitor. Retrieved from https://www.merics.org/en/microsite/china-monitor/central-planning-local-experiments (accessed 19 April 2019)
    Ohm, P. (2009). Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA l. Rev., 57, 1701.
    Olhede, S. C., & Wolfe, P. J. (2018). The future of statistics and data science. Statistic & Probability Letters, 136, 46-50.
    Pentland, A. (2009). Reality mining of mobile communications: Toward a new deal on data. The Global Information Technology Report 2008–2009, 1981.
    Pentland, A. (2014). Social physics: How good ideas spread-the lessons from a new science. Penguin.
    Perrons, R. K., & McAuley, D. (2015). The case for “n «all”: Why the Big Data revolution will probably happen differently in the mining sector. Resources Policy, 46, 234-238.
    Reinsel, D., Gantz, J., & Rydning, J. (2017). Data age 2025. The Evolution of Data to Life-Critical. Don’t Focus on Big Data.
    Rubin, V. L. (2010). Epistemic modality: From uncertainty to certainty in the context of information seeking as interactions with texts. Information Processing & Management, 46(5), 533-540.
    Rubin, V. L., & Liddy, E. D. (2006, March). Assessing Credibility of Weblogs. In AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs (pp. 187-190).
    Rubin, V., & Lukoianova, T. (2013). Veracity roadmap: Is big data objective, truthful and credible?. Advances in Classification Research Online, 24(1), 4.
    Schmidt, C. (2018, March 19). How digital leaders from the BBC and Al Jazeera are planning for the ethics of AI. Nieman. Retrieved from http://www.niemanlab.org/2018/03/how-digital-leaders-from-the-bbc-and-al-jazeera-are-planning-for-the-ethics-of-ai/ (accessed 19 April 2019)
    Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: The real-world use of big data. IBM Global Business Services, 12(2012), 1-20.
    Secchi, P. (2018). On the role of statistics in the era of big data: a call for a debate. Statistics & Probability Letters, 136, 10-14.
    Smith, M., Patil, D., & Munoz, C. (2016). Big Risks, Big Opportunities: the Intersection of Big Data and Civil Rights. The White House. Retrieved from https://obamawhitehouse.archives.gov/blog/2016/05/04/big-risks-big-opportunities-intersection-big-data-and-civil-rights (accessed 1 January 2019)
    Solon, O. (2018, July 6). The rise of 'pseudo-AI': how tech firms quietly use humans to do bots' work. The Guardian. Retrieved from https://www.theguardian.com/technology/ 2018/jul/06/artificial-intelligence-ai-humans-bots-tech-companies (accessed 1 January 2019)
    Talia, D. (2013). Clouds for scalable big data analytics. Computer, 46(5), 98-101.
    The Economist. (2017, May 6). Fuel of the future: Data is giving rise to a new economy. Retrieved from https://www.economist.com/briefing/2017/05/06/data-is-giving-rise-to-a-new-economy (accessed 1 January 2019)
    The World Bank. (2010). WORLD BANK ANNUAL REPORT 2010. Retrieved from http://siteresources.worldbank.org/EXTANNREP2010/Resources/WorldBank-AnnualReport2010.pdf (accessed 1 January 2019)
    Torrecilla, J. L., & Romo, J. (2018). Data learning from big data. Statistics & Probability Letters, 136, 15-19.
    Turow, J. (2006). Niche envy: Marketing discrimination in the digital age. Cambridge, MA: MIT Press.
    Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.
    Yandell, B. S. (2014). Big Data. Wiley StatsRef: Statistics Reference Online, 1-7.
    Zhang, X., Liu, C., Nepal, S., Pandey, S., & Chen, J. (2012). A privacy leakage upper bound constraint-based approach for cost-effective privacy preserving of intermediate data sets in cloud. IEEE Transactions on Parallel and Distributed Systems, 24(6), 1192-1202.
    Zwitter, A. (2014). Big data ethics. Big Data & Society, 1(2), 2053951714559253.

    無法下載圖示 電子全文延後公開
    2025/12/31
    QR CODE