簡易檢索 / 詳目顯示

研究生: 林清炎
Ching-Yan Lin
論文名稱: 變異型態的變分不等式
Variant Problems On Variational Inequalilties
指導教授: 朱亮儒
Chu, Liang-Ju
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 91
中文關鍵詞: 一致點定理,最大最小不等式,固定點定理.
英文關鍵詞: Coincidence theorem, minimax ine-, quality, Nikaido's coincidence theor-, em,Gorniewicz fixed point theorem,, nearly convex, G-space , Bregman -, type proximal point algorithm.
論文種類: 學術論文
相關次數: 點閱:227下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this paper, we establish existence theory and algorithms on
    variational problems, by which we mean here problems of fixed
    points, coincidences, minimax inequalities, generalized variat-
    ional inequalities, generalized quasi-variational inequalities.
    Under weakened assumptions on the operators and constraint reg-
    ions, we improve and generalize recently many well-known exist-
    ence theorems. More specifically, we establish two versions of
    Nikaidos coincidence theorem from different approaches, and use
    these to show several existence theorems for the generalized v-ariational inequalities, in the case that C is noncompact and
    nonconvex, but merely a nearly convex set. Also, we introduce
    a new Bregman-type proximal point algorithm for solving variat-
    ional inequalitiy problems in a reflexive Banach space, and pr-
    ovide a continuation method to solve nonsmooth convex programm-
    ing.

    Chapter 1. Introduction 1 Chapter 2. Extension of Nikaido's Coincidence Theorem 2.1 Definitions and Preliminaries 5 2.2 Two Versions of Nikaido's Coincidence Theorem 12 2.3 Applications to GVI(T,C,phi) 20 Chapter 3. Minimax and Quasi-variational Inequalities in G-paces 3.1 Definitions and Preliminaries 31 3.2 Main Results 36 3.3 Applications to GQVI(S,T,X,phi) 45 Chapter 4. A New Proximal Point Algorithm for Variational Inequalities 4.1 Definitions and Preliminaries 49 4.2 Convergence Analysis of BPPA 59 4.3 Convergence Property under Some Variant Monotonicity 64 Chapter 5. An Approach to Solving Convex Programmings with Nonsmoo? th Objectives 5.1 Definitions and Preliminaries 71 5.2 Existence and Continuity 74 5.3 Maximality and Uniqueness of Optimal Solutions 78 Reference 85

    [1] Ansari, Q.H., Lin, Y.C. & Yao, J.C. (2000). General KKM theorem with applications to minimax and variational inequalities, J. Math. Anal. Appl.
    104, 41-57.
    [2] Asplund, E. (1967). Averaged norms, Israel J. Math. 5, 227-
    233.
    [3] Aubin, J.-P. & Cellina, A. (1994). "Differential Inclusion'', Springer-Verlag,
    Berlin, Heidelberg.
    [4] Aubin, J.-P. & Ekeland, I. (1984). Applied nonlinear analysis, John Wiley &
    Sons, New York.
    [5] Begle, E. G. (1950). A fixed point theorem, Ann. of Math. 51, 544-550.
    [6] Brezis, H. (1973). Operateurs maximaux monotones et semi-g
    roupes de con-tractions dans les espaces de Hilbert , North-Holland, Amsterdan.
    [7] Brezis, H. & Haraux, A. (1976). Image d'une somme d' operateurs monotones et applications, Israel Journal of Mathematics, 23 (2), 165-185.
    [8] Browder, F.E. (1984). Coincidence theorems, minimax theorems, and varia-tional inequalities, Contemp. Math. 26, 67-80.
    [9] Burachik, R.S. (1995). Generalized proximal point methods for the variationalinequality problem, Ph.D. thesis, Instituto de Matemtica Pura e Aplicada, Rio de Janeiro.
    [10] Burachik, R.S., Iusem, A.N. & Svaiter, B.F. (1997). Enlargement of monotone operators with applications to variational inequalities, Set-Valued Analysis 5, 159-180.
    [11] Burachik, R.S. & Iusem, A.N. (1998). A generalized proximal point algo-rithm for the variational inequality problem in a Hilbert space, SIAM J. Optim. 8, 197-216.
    [12] Censor, Y., Iusem, A.N. & Zenios, S.A. (1998). An interior point method with Bregman functions for the variational inequality problem with paramontone operators, Math. Programming, to appear.
    [13] Chang, S.S., Lee, B.S., Wu, X., Cho, Y.J. & Lee, G.M. (1996). On the generelized quasi赳ariational inequality problems, J. Math. Anal. Appl. 203, 686-711.
    [14] Chang, S. S. & Zhang, Y. (1991) Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159, 208-223.
    [15] Chang, T.H. & Yen, C.L. (1996). KKM properties and fixed point theorem, J. Math. Anal. Appl. 203, 224-235.
    [16] Chen, G. & Teboulle, M. (1993). Convergence analysis of a proximal-ike minimization algorithm using Bregman functions , SIAM J. Optim. 3, 538-543.
    [17] Chu, L.J. (1999). Unified approaches to nonlinear optimization, Optimization 46, 25-60.
    [18] Chu, L.J. (1997). On Fan's minimax inequality , J. Math. Anal. Appl. 201, 103-113.
    [19] Chu, L.J. (1996). On the sum of monotone operators, Michigan Math. J. 43(2), 273-291.
    [20] Chu, L.J. (1999). On the continuity of trajectories for nonlinear monotone complementarity problems, Scientiae Mathematicae (SCM), Japanese Associa-tion of Mathematical Sciences, Vol 1, No. 3, 1-13.
    [21] Chu, L.J. & Lin, C.Y. (2002). A general coincidence theorem in G-paces, to appear in Journal of Optimization.
    [22] Chu, L.J., Lin, C.Y. &Wu, T.Y. (2002). Generalized vector quasi-variational inequalities on nonconvex constraint regions, submitted to J. Math. Anal. Appl.
    [23] Clarke, F.H. (1989). Optimization and nonsmooth analysis, Centre de Recheres Mathmatiques, Universit de Montral, Canada.
    [24] Ding, X.P., Kim, W.K. & Tan, K.K. (1992). A selection theorem and its applications, Bull. Austral. Math. Soc. 46, 205-212.
    [25] Ding, X.P. & Tarafdar, E. (1994). Some coincidence theorems and applications, Bull. Austral. Math. Soc. 50, 73-80.
    [26] Fan, K. (1952). Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci., U.S.A. 38, 121-126.
    [27] Fan, K. (1961). A generalization of Tychnoff's fixed point theorem , Math. Ann. 142, 305-310.
    [28] Fang, S.C. & Peterson, E.L. (1982). Generalized variational inequalities, J. Opti. Theory and Appl. 38(3), 363-
    383.
    [29] Gorniewicz, L. (1975). A Lefschetz-type fixed point theorem, Fund. Math.,88, 103-115.
    [30] Granas, A. & Liu, F.-C. (1986). Coincidences for set-valued maps and minimax inequalities, J. Math. Pures et Appl. 65, 119-148.
    [31] Halkin, H. (1967). Finite convexity in infinite-dimensional spaces, Proc. of the Colloquium on Convexity, Copenhagen (1965), W. Fenchel(ed.), Copenhagen, 126-131.
    [32] Kiwiel, K.C. (1997). Proximal minimization methods with generalized Breg-man functions, SIAM J. Control and Optim. 35, 1142-1168.
    [33] Knaster, B. & Kuratowski, C. & Mazurkiewicz, S. (1929). Ein beweis des fixpunktsatzes fur n-dimensionale simplexe, Fund. Math. 14, 132-137.
    [34] Kojima, M., Mizuno, S. & Yoshise, A. (1989). A polynomial-time algorithm for a class of linear complementarity problems, Math. Program. 44, 1-27.
    [35] Lin, L.J. & Yu, Z.T. (1999). Fixed points theorems of KKM-type maps, Nonlinear Analysis 38, 265-275.
    item [36] Luque, F.J. (1984). Asymptotic convergence analysis of the proximal point algorithm, SIAM J. Control and Optim. 22, 277-293.
    [37] Massey, W.S. (1980). ``Singular Homology Theory'' , Springerm-Verlag, New York.
    [38] Moreau, J.J. (1965). Proximite et dualite dans un espace Hilbertien, Bull. Soc. Math. France 93, 273-299.
    [39] Massey, W.S. (1980). ``Singular Homology Theory'' , Springer-Verlag, New York.
    [40] McLinden, L. (1980). The complementarity problem for maximal monotone multifunctions, in: R.W. Cottle, F. Giannessi & J.L. Lions, eds., Variational Inequalities and Complementarity Problems, John Wiley & Sons, New York, 251-270.
    [41] Minty, G.J. (1961). On the maximal domain of a monotone function, Michigan Math. J. 8, 135-137.
    [42] Monteiro, R.C. & Adler, I. (1989). Interior path following primal-dual algorithms, Part I : Linear programming , Math. Program. 44, 27-42.
    [43] Monteiro, R.C. & Adler, I. (1989). Interior path following primal-dual algorithms, Part II : Convex quadratic programming , Math. Program. 44, 43-66.
    [44] Nikaid, H. (1959). Coincidence and some systems of inequalities, J. Math. Soc., Japan 11, 354-373.
    [45] Park, S. (1993). Coincidences of composites of admissible u.s.c. maps and applications, C.R. Math. Acad. Sci. Canada 15, 125-130.
    [46] Park, S. (1994). Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31, 493-519.
    [47] Park, S. & Kim, H. (1997) Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209 , 551-571.
    [48] Rockafellar, R.T. (1970). On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149, 75-86.
    [49] Rockafellar, R.T. (1976). Monotone operators and the proximal point algo-rithm, SIAM J. Control and Optim. 14, 877-898.
    [50] Rockafellar, R.T. (1969). Locally boundedness of nonlinear monotone opera-tors, Michigan Math. J. 16, 397-407.
    [51] Rockafellar, R.T. (1970). On the virtual convexity of the domain and range of a nonlinear maximal monotone operator , Math. Ann. 185, 81-90.
    [52] Rockafellar, R.T. (1970). Convex Analysis, Princeton U. Press, Princeton, New Jersey.
    [53] Saigal, R. (1976). Extension of the generalized complemetarity problem, Math. of Oper. Res. 1 (3), 260-266.
    [54] Seesa, S. (1988). Some remarks and applications of an extensions of a lemma of a Ky Fan , , Comment. Math. Univ. Carolin. 29, 567-575.
    [55] Schrijver, A. (1986). Theory of Linear and Integer Programming , John Wiley & Sons, New York.
    [56] Tarafdar, E. (1992). Fixed point theorems in H貞paces and equilibrium points of abstract economies, J. Austral. Math. Soc. Ser. A 53, 252-260.
    [57] Tian, G.Q. (1992). Generealization of Fkkm theorem and the Ky Fan min-imax inequality with applications to maximal elements, price equilibrium and complementarity , J. Math. Anal. Appl. 170, 457-471.
    [58] Troyanski, S. (1971). On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37, 173-180.
    [59] Wu, X. & Shen, S. (1996). A futher generalization of Yannelis-Prabhakar's continuous selection theorem and its applications , J. Math. Anal. Appl. 197, 61-74.
    [60] Yao, J.C. (1993). On the generalized variational inequality , J. Math. Anal. Appl. 174, 550-555.

    QR CODE