簡易檢索 / 詳目顯示

研究生: 蔡森任
Sen Jen Tsai
論文名稱: 成對比較資料中個別差異模型結構之分類
A taxonomy of paired comparison models for individual differences
指導教授: 蔡蓉青
Tsai, Rung-Ching
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 成對比較塞斯通模型Bradley-Terry-Luce 模型個別差異
英文關鍵詞: Paired comparison, Thurstonian model, Bradley-Terry-Luce model, Individual differences
論文種類: 學術論文
相關次數: 點閱:237下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類的決策與選擇行為是生活中常見的心理活動,故為心理學所廣泛探討與應用的議題之一,成對比較是目前探討選擇行為常用的方法。而在成對比較資料的分析上,主要的模型可分為塞斯通(Thurstone)以及Bradley-Terry-Luce (BTL)兩大類。
    探討這兩類模型的文獻很多,但很少將此兩種模型做完整的分類比較,我們試圖從模型中看待或考量個別差異的結構之不同,將這些模型進行清楚的分類。本篇論文首先介紹了塞斯通以及BTL兩種成對比較模型及其發展,
    並將文獻中與其相關或延伸的模型進行分類來區別它們在考慮個別差異上之異同,另外我們選用了R、Mplus、LatentGold三種統計軟體來進行模型估計,利用模擬研究的方法,
    經由比較估計量的偏差以及均方誤差去檢視這三種軟體在各類模型的估計表現。我們並且分析了兩筆關於與名人交談以及選擇大學的實際成對比較資料,使讀者對於本文所提之模型分類及其功用能更加清晰。
    最後我們依本文之模型分類,整理出目前常用的一些統計軟體可運用於分析成對比較資料的現況,以期能夠提供未來進行成對比較研究的人員作為參考。

    Making decisions and choices are common psychological activities in our daily lives, and therefore choice behavior has been widely studied and discussed in psychology. There are two major classes of models in analyzing paired comparison data, namely the Thurstonian and the Bradley-Terry-Luce models. Although there has been quite a few theoretical development and applications of these two models throughout the literature, these works were seldom compared or integrated to provide a comprehensive overview. In this thesis, we first formulated a taxonomy of paired comparison models based on how they account for individual differences in judgment. Secondly, three statistical softwares, including R, Mplus, and LatentGold were used for estimation of models within such a taxonomy and their performance in parameter recovery were evaluated and compared through empirical bias and mean square error in simulation studies. Moreover, two paired comparison datasets of “`choosing from celebrities to have a conversation with’’ and “choosing university to attend’’ were analyzed to better illustrate the use of such a taxonomy. Finally, we gave a summary on statistical softwares capable of analyzing paired comparison data and we hoped to facilitate better use or analysis of paired comparison data for researchers.

    1 緒論 9 2 成對比較模型 13 2.1受試者內之多組比較 14 2.2受試者間的個別差異 17 2.2.1 成對比較第一類模型 17 2.2.2 成對比較第二類模型 19 2.2.3 成對比較第三類模型 22 2.2.4 成對比較第四類模型 24 3 參數估計及模型的配適度 27 3.1參數估計 27 3.1.1 R 28 3.1.2 Mplus 30 3.1.3 LatentGold 31 3.2模型配適度 32 4 模擬研究 33 4.1第一類模型 34 4.1.1塞斯通模型 34 4.1.2 BTL模型 36 4.2第二類模型 39 4.2.1塞斯通模型 39 4.2.2 BTL模型 46 4.3 第三類模型 53 4.3.1塞斯通模型 53 4.3.2 BTL模型 55 4.4第四類模型 58 4.4.1塞斯通模型 59 4.4.2 BTL模型 65 5 應用分析 71 5.1 交談的喜好選擇 71 5.2 選擇大學 79 6 討論與建議 85 7 結論 92 參考文獻 94 附錄1 R 程式碼 103 附錄2 Mplus 程式碼 104 附錄3 LatentGold 程式碼 106

    Agresti, A. (1992). Analysis of ordinal paired comparison data. Applied Statistics, 41, 287-297.

    Aitkin, M., Anderson, D., & Hinde, J. (1981). Statistical modeling of data on teaching styles (with discussion).
    Journal of Royal Statistical Society, 144,419-461.

    Aitkin, M. & Rubin, D.B. (1985). Estimation and hypothesis testing in mixture models. Journal of Royal Statistical Society, 47, 67-75.

    Akaike, H. (1970). Statistical predictor identition.Annals of the Institute. Statistical Mathematics, 22, 203-217.

    Bock, R.D. (1958). Remarks on the test of signi cance for the method of paired comparison. Psychometrika, 23, 323-334.

    Bock, R.D. & Aikin, M. (1981). Marginal maximum likelihood estimation of item parameters. Psychometrika, 46, 443-459.

    Bemmaor, A.C. & Wagner, U. (2000). A multiple-item model of paired comparisons:Separating chance from latent reference. Journal of Marketing Research, 8, 514-524.

    Bockenholt, U. & Bockenholt, I. (1990). Modeling individual diferences in unfolding preference data: A restricted latent class approach. Applied Psychological Measurement, 14, 257-269.

    Bockenholt, U. (2001a). Hierarchical modelling of paired comparison data. Psychological Methods, 6, 49-66.

    Bockenholt, U. (2001b). Preference models with latent variables. In N.J.Smelser & P.B. altes (Eds.), international encyclopedia of the social and behavioral sciences (Vol. 17, pp. 11965-11969). Amsterdam, the Netherlands: Elsevier.

    Bockenholt, U. & Dillon, W.R. (1997). Modeling within-subject dependencies in ordinal paired comparison data. Psychometrika, 62, 414-434.

    Bockenholt, U. & Tsai, R. (2001). Individual diferences in paired comparison data. British Journal of Mathematical and Statistical Psychology, 54, 265-277.

    Bockenholt, U. (2006). Thurstonian-based analyses: past, present, and future utilities. Psychometrika, 71, 615-629.

    Bolt, D.M., Cohen, A.S., & Wollack, J.A. (2001). A mixture item response model for multiple-choice data. Journal of Educational and Behavioral Statistics, 26, 381-409.

    Bradley, R.A. & Terry, M.E. (1952). Rank analysis of incomplete block designs: I, The method of paired comparisons. Biometrika, 39, 324-345

    Courcoux, P. & Semenou, M. (1996). Preference data analysis using a paired comparison model. Food Quality and peference, 8, 353-358.

    Cattelan, M. (2011). Models for paired comparison data: a review with emphasis on dependent data. (Working Paper Series, N. 8). Padova, Italy: University of Padua, Department of Statistical Sciences.

    Choisel, S. & Wickelmaier, F. (2007). Evaluation of multichannel reproduced sound: scaling auditory attributes underlying listener preference. Journal of the Acoustical Society of America, 121, 388-400.

    David, H.A. (1988). The method of paired comparisons. Griffin, London.

    Dittrich, R., Hatzinger, R., & Katzenbeisser, W. (1998). Modelling the effect of subject-speci c covariates in paired comparison studies with an application to university rankings. Applied Statistics, 47, 511-525.

    Dittrich, R., Hatzinger, R. (2009). Fitting loginear Bradley-Terry models (LLBT) for paired comparisons using the R package prefmod. Psychology Science Quarterly, 51, 216-242.

    Dittrich, R., Francis, B., Hatzinger, R., & Katzenbeisser, W. (2006). ModModelling dependency in multivariate paired comparisons : A log-linear approach. Mathematical Social Sciences, 52, 197-209.

    Dillon, W.R., Kumar, A., & Borrero, M.S. (1993). Capturing individual differences in paired comparisons : An extended BTL model incorporating descriptor variables. Journal of Marketing Research, 68, 42-51.

    Duineveld, C.A.A., Arents, P., & King, B.M. (2000). Log-linear modelling of paired comparison data from consumer tests. Food Quality and Preference,11, 63-70.

    Everitt, B.S. (1988). A Monte Carlo investigation of the likelihood ratio test for number of classes in latent class analysis. Multivariate Behavioral Research, 23, 531-538.

    Ellermeier, W., Mader, M., & Daniel, P. (2004). Scaling the unpleasantness of sounds according to the BTL model: ratio-scale representation and psychoacoustical analysis. Acta Acustica united with Acustica, 90, 101-107.

    Fechner, G.T. (1860). Elemente der Psychophysik(two volumes). Leipzig, Germany: Breitkopf and Hartel.

    Ferris, G.E. (1958). The k-visit method of consumer testing. Biometrics, 14,39-49.

    Francis, B., Dittrich, R., & Hatzinger, R. (2010). Modeling heterogeneity in ranked responses by nonparametric maximum likelihood : How do europeans get their scientic knowledge? Annals of Applied Statistics, 4, 2181-2202.

    Feldman, B.J., Masyn, K.E., & Conger, R.D. (2009). New approaches to studying problem behaviors: A comparison of methods for modeling longitudinal,categorical adolescent drinking data. Developmental Psychology, 45,652-676.

    Francis, B., Dittrich, R., Hatzinger, R., & Penn, R. (2002). Analysing partial ranks by using smoothed paired comparison methods: An investigation of valus orientation in Europe. Applied Statistics, 51, 319-336.

    Gregory-Ashby, F. & Daniel, M. (2000). A thurstone-coombs model of concurrent ratings with sensory and liking dimensions. Journal of Sensory Studies, 17, 43-59.

    Hatzinger, R. & Francis, B.J. (2004). Fitting paired comparison models in R (Research Report Series, 3). Vienna, Austria: University of Vienna, Department of Statistics and Mathematics.

    Hassan, T. (1994). Numerical solution of likelilikelihood equations for a rst-order response surface model for mixture paired comparisons. Statistical Methods and Applications, 3, 419-428.

    Hatzinger, R. (2010). prefmod: Utilities to t paired comparison models for preferences. (http://CRAN.R-project.org/package=prefmod).

    Koczkodaj, W.W. (1998). Testing the Accuracy Enhancement of Pairwise Comparisons by a Monte Carlo Experiment. Journal of Statistical Planning and Inference, 69, 21-32.

    Kissler, J. & Baauml, K.H. (2000). E ects of the beholder's age on the perception of facial attractiveness. Acta Psychologica, 104, 145-166.

    Lesaffre, E. & Spiessens, B. (2001). On the e ect of the number of quadrature points in a logistic random-effects model: an example. Applied Statistics, 50,325-335.

    Lubke, G.H. & Muthen, B. (2004). Investigating population heterogenity wity factor mixture models. Psychological Methods, 10, 21-39.

    Luce, R.D. (1959). Individual Choice Behavior. Wiley, New York.

    Maydeu-Olivares, A. (2001). Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66, 209-228.

    Maydeu-Olivares, A. & Bockenholt, U. (2005). Structural equation modeling of paired-comparison and ranking data. Psychological Methods, 10, 285-304.

    Maydeu-Olivares, A. (2003). Thurstonian covariance and correlation structures for multiple judgement paired comparison data. (Working Paper 04-03).Madrid, Spain: Instituto de Empresa.

    Mcguire, D.P. & Davison, M.L. (1991). Testing group di erence in paired comparison data. Psychological Review, 110, 171-182.

    Maydeu-Olivares, A. & Bockenholt, U. (2009). Modeling preference data. In R. Millsap & A. Maydeu-Olivares (Eds.). Handbook of Quantitative Methods in Psychology (pp. 264-282). London: Sage.

    Maydeu-Olivares, A. (2001). Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66, 209-228.

    Meyerm, J.P. (2010). A mixture Rasch model with item response time components.Applied Psychological Measurement, 34, 521-538.

    Moore, R.C. (1990). A formal theory of knowledge and action. In J.F. Allen, J. Hendler, & A. Tate (Eds.). Readings in Planning (pp. 480-519). Morgan Kaufmann Publishers: San Mateo, CA.

    Montanari, A. & Viroli, C. (2010). Heteroscedastic factor mixture analysis. Statistical Modeling, 10, 441-460.

    Maydeu-Olivares, A. & Bockenholt, U. (2009). Modeling preference data. In R. Millsap & A. Maydeu-Olivares (Eds.). Handbook of Quantitative Methods in Psychology (pp. 264-282). London: Sage.

    Maydeu-Olivares, A. (2001). Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66, 209-228.

    Meyerm, J.P. (2010). A mixture Rasch model with item response time components. Applied Psychological Measurement, 34, 521-538.

    Moore, R.C. (1990). A formal theory of knowledge and action. In J.F. Allen, J. Hendler, & A. Tate (Eds.). Readings in Planning (pp. 480-519). Morgan Kaufmann Publishers: San Mateo, CA.

    Montanari, A. & Viroli, C. (2010). Heteroscedastic factor mixture analysis. Statistical Modeling, 10, 441-460.

    Muthen, B. & Asparouhov, T. (2006). Item response mixture modeling:Application to tobacco dependence criteria. Addictive Behaviors, 31, 1050-1066.

    Muthen, L.K. & Muthen, B.O. (1998-2010). Mplus, Los Angeles: Muthen & Muthen.

    Muthen, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 49, 551-560.

    Muthen, B. (1993). Goodness of t with categorical and other non normal variables. In K.A. Bollen & J.S. Long (Eds.). Testing structural equation models (pp. 205-234). Newbury Park, CA:Sage.

    Muthen, B., du Toit, S.H.C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Unpublished manuscript,
    College of Education, University of California, Los Angeles.

    Neale, M.C., Boker, S.M., Xie, G., & Maes, H.H. (1999). Mx: Statistical Modeling. Box 710 MCV, Richmond, VA 23298: Department of Psychiatry. 2nd edition.

    Okubo, T., Nakamura, K., & Mayekawa, S. (2009). A formulation of the latent class vector model for pairwise data. World Academy of Science ,Engineering and Technology, 54, 511-514.

    Ozaki, K. (2008). Twin analysis on paired comparison data. Behav Genet,38, 212-222.

    Rabe-Hesketh, S., Pickles, A., & Taylor, C. (2000). Generalized linear latent and mixed models. Stata Technical Bulletin, 53, 47-57.

    Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., & Congdon, R.T. (2011). HLM 7: Hierarchical linear and nonlinear modeling. (Statistical software manual).

    Lincolnwood, IL: Scienti c Software International.
    Silk, A.J. & Urban, G.L. (1978). Pre-test market evaluation of new packageed goods: A model and measurement methodology. Journal of Marketing Research, 15, 171-191.

    Skrondal, A. & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267-287.

    Strobl, C., Wickelmaier, F., & Zeileis, A. (2011). Accounting for individual differences in Bradley-Terry models by means of Recursive partitioning.

    Journal of Educational and Behavioral Statistics, 36, 135-153.

    Takane, Y. (1987). Analysis of covariance structures and probabilistic binary choice data. Cognition and Communication, 20, 45-62.

    Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 34, 273-286.

    Toyoda, H., Ozaki, K., Murohashi, H., & Haga, M. (2004). Paired comparison analysis by using structural equation modeling: Sche e's method and its improvements. The Japanese Journal of Psychology, 75, 229-307.

    Tsai, R. (2000). Remarks on the identi ability of Thurstonian ranking models: Case V, Case III, or neither? Psychometrika, 65, 233-240.

    Tsai, R. & Bockenholt, U. (2002). Two-level linear paired comparison models: estimation and identi ability issues. Mathematical Social Sciences, 43, 429-449.

    Tsai, R. & Bockenholt, U. (2001). Maximin likelihood estimation of factor and ldeal point models for paired comparison data. Journal of Mathematical Psychology , 45, 795-811.

    Tsai, R. & Wu, T-L. (2004). Analysis of paired comparison data using Mx. Structural Equation Modeling: A Multidisciplinary Journal, 11, 73-91.

    Tsukida, K., Maya, R., & Gupta. (2011). How to analyze paired comparison data. UWEE Technical Report Number UWEETR-2011-0004. Washington, Seattle: University of Washington, Department of Electrical Engineering.

    Tversky, A. & Sattath, S. (1979). Preference trees. Psychological Review, 86, 542-573.

    Vermunt, J.K. & Magidson, J. (2005). Addendum to the Latent Gold User's Guide: Upgrade Manual for Version 4.0, Belmont, MA: Statistical Innovations Inc.

    Wei, G.C.G. & Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85, 699-704.

    Whiting, M.J., Stuart-Fox, D.M., OConnor, D., Firth, D., Bennett, N.C.,& Blomberg, S.P. (2006). Ultraviolet signals ultra-aggression in a lizard. Animal Behavior, 72, 353-363.

    Williamson, T.B. & Watson, D.O.T. (2010). Assessment of community preference rankings of potential environmental effects of climate change using the method of paired comparisons. Climatic Change, 99, 589-612.

    Yung, Y.F. (1997). Finite mixtures in con rmatory factor analysis models. Psychometrika ,62, 297-330.

    下載圖示
    QR CODE