簡易檢索 / 詳目顯示

研究生: 廖述立
Liao, Shu-Li
論文名稱: 應用在多重模式極座標發射機之封包三角積分調變器的設計與實現
Design and Implementation of the Envelope Delta-Sigma Modulator for Multi-Mode Polar-Transmitters
指導教授: 郭建宏
Kuo, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 三角積分調變極座標發射機封包調變CDMA-2000長期演進技術(LTE)
英文關鍵詞: Delta-Sigma Modulation (ΔΣ), Polar-Transmitter, Envelope Modulation, CDMA-2000, Long Term Evolution (LTE)
論文種類: 學術論文
相關次數: 點閱:278下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將三角積分調變技術使用於極座標發射機中的封包調變上,並提出一個二階四位元全數位低通三角積分調變器,對其回授係數與輸入振幅大小做優化後,使得頻帶外雜訊低於一般的三角積分調變器,並讓發射機後端的帶通濾波器規格能夠減輕。當頻帶外雜訊降低後,發射機對於其他頻段的干擾可更為降低。

    為了提升操作速率,本論文將高精確度截去器之判斷邏輯簡化,並利用查表法直接輸出回授數值,移除回授路徑上的移位乘法器。第二級迴路使用並列加法,透過改變加法順序使得第二級迴路可以減少一個加法器的延遲時間。簡化這些邏輯後,在使用CMOS 0.18μm製程所製造的晶片,其操作速率可至少達到208MHz。本論文以CMOS 0.18μm技術與CMOS 90nm技術各實現一個數位封包三角積分調變器,並可以處理第二代/第三代/第四代通訊系統之封包訊號,提供多重模式極座標發射機在封包調變的通用解決方案。而這兩顆晶片操作在208MHz時的消耗功率分別為3.582mW與0.99mW,在整個收發機中所佔的比率極低。

    為了驗證本論文所提出的封包三角積分調變器的可行性,以本論文所設計的
    三角積分調變器與切換式功率放大器陣列所組成的極座標發射機雛型也被實現。以CDMA-2000系統之訊號量測此發射機雛型時,輸出之鄰近通道功率洩漏比分別為-42.27dB與-54.02dB。以頻寬5MHz的LTE系統訊號量測時,輸出之鄰近通道功率洩漏分別為-34.12dB、-39.33dB與-32.36dB。在沒有附加的濾波器下,量測結果顯示此極座標發射機雛型能夠符合CDMA-2000與LTE(頻寬5MHz)規格,證明了本論文所提出之封包三角積分調變器應用在極座標發射機中的可行性。

    In this thesis, a second-order, four-bit, all-digital lowpass delta-sigma (ΔΣ) modulator for envelope modulation in polar-transmitters is presented. In the proposed ΔΣ modulator, coefficients of feedback loops and input amplitude are optimized to lower out-of band noise band. With the proposed ΔΣ modulator, the out-of-band noise can be lower than conventional ΔΣ modulator. It's beneficial for easier the specification of the post bandpass filter in transmitters. Moreover, lower modulation noise reduced the interference which affect to other channel.

    For high-speed operation, a high accurate truncator with simplified comparison logic is proposed, and multipliers for performance feedback coefficients are replaced by a look-up table. Delay time of the second-order loop is decreased one adder’s delay by parallel addition. This thesis had been demonstrated two of all-digital ΔΣ modulator which are fabricated by CMOS 0.18μm technology and CMOS 90nm technology. The chip which is fabricated by CMOS 0.18μm technology can operate at least to 208MHz thanks to logic simplification in the foregoing. These modulators can process envelope signals of 2G/3G/4G communication systems and provide a general envelope processing solution for multi-mode polar-transmitters. Power dissipation of two modulators is 3.582mW and 0.99mW, respectively. The power dissipation of envelope ΔΣ modulator is slight portion in transceivers.

    In order to verify the feasibility of polar-transmitters using ΔΣ modulator which is proposed by this thesis, the prototype of polar-transmitter is assembled by the ΔΣ modulator and the switching power amplifier array. While the prototype polar-transmitter is measured with CDMA-2000 signal, adjacent channel leakage power ratios (ACLR) are -42.27dB and -54.02dB, respectively. While the input signal is LTE (Channel BW = 5MHz), ACLRs are -34.12dB,-39.33dB, and -32.36dB, respectively. The measurement result shows the prototype polar-transmitter can achieved CDMA-2000 and LTE (Channel BW = 5MHz) standard without additional filters and proved the feasibility of the envelope ΔΣ modulator which is proposed by this thesis.

    摘  要 i ABSTRACT iii 誌  謝 v 目  錄 viii 表 目 錄 xi 圖 目 錄 xii 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 7 1.3 研究步驟 8 1.4 論文組成 9 第二章 適合封包調變的三角積分調變器 10 2.1 離散時間系統介紹 10 2.2 數位濾波器 11 2.2.1 梳型濾波器(Comb Filter) 11 2.2.2 微分器式(Differentiator)梳型濾波器 12 2.2.3 積分器(Integrator) 14 2.3 三角積分調變 (Delta-Sigma Modulation, DSM) 17 2.4 極座標發射機介紹 23 2.5 極座標發射機中的封包調變需求 24 2.6 封包調變使用二階四位元三角積分調變器 28 2.7 系統所需取樣頻率之評估 32 第三章 數位三角積分調變器的實現與驗證 35 3.1 溢位控制器 35 3.2 快速回授機制 38 3.3 平行加法 42 3.4 字元長度(Word-Length)的取捨 43 3.5 電路驗證 44 第四章  以CMOS製程實現數位三角積分調變器 47 4.1 邏輯合成(Logic Synthesis) 47 4.1.1 載入DC前的準備工作 48 4.1.2 設計環境設定 49 4.1.3 時序限制要求(Timing Constraints) 50 4.1.4 邏輯合成 51 4.2 自動佈局與繞線(Automatic Place and Route, APR) 52 4.2.1 資料準備 53 4.2.2 佈局鋪設(Floor Planning) 53 4.2.3 元件擺放(Placement)與時脈樹合成(Clock Tree Synthesis) 55 4.2.4 自動繞線 56 4.2.5 完成佈局與匯出檔案 58 4.3 以TSMC 0.18μm CMOS製程實現之封包調變器量測結果 59 4.4 以UMC 90nm CMOS製程實現之封包調變器量測結果 65 第五章 極座標發射機雛型之量測 72 5.1 切換式放大器陣列 72 5.2 訊號產生流程 74 5.3 修正三角積分調變器之量化方式 77 5.4 量測結果 77 第六章 結論與未來展望 78 6.1 結論 78 6.2 文獻比較 79 6.1.1 本篇論文與其他相關文獻比較 79 6.1.2 三角積分調變器與多重相位脈波寬度調變器之比較 81 6.3 未來展望 82 參 考 文 獻 84 自  傳 88 學 術 成 就 90

    [1] L.R Kahn, “Single-Sideband Transmission by Envelope Elimination and Restoration,” in Proc. IRE, vol. 40, no.7, pp. 803-806, Jul. 1952.
    [2] Y. Wang, “An Improved Kahn Transmitter Architecture Based on Delta-Sigma Modulation,” in IEEE MTT-S International Microwave Symposium Digest, 2003, pp. 1327-1330.
    [3] D. K. Su, and W. J. McFarland, “An IC for Linearizing RF Power Amplifiers Using Envelope Elimination and Restoration,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2252-2258, Dec. 1998.
    [4] P. Nagle, P. Burton, E. Heaney, and F. McGrath, “A Wide-band Linear Amplitude Modulator for Polar Transmitters Based on the Concept of Interleaving Delta Modulation,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1748-1756, Dec. 2002.
    [5] P.T.M.van Zeijl, and M. Collados, “A Digital Envelope Modulator for a WLAN OFDM Polar Transmitter in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2204-2211, Oct. 2007.
    [6] A. Kavousian, D.K. Su, M. Hekmat, A. Shirvani, B.A. Wooley, “A Digitally Modulated Polar CMOS Power Amplifier With a 20-MHz Channel Bandwidth,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2251-2258, Oct. 2008.
    [7] M. Taromaru, N. Ando, T. Kodera, and K. Yano, “An EER Transmitter Architecture with Burst-Width Envelope Modulation Based on Triangle-Wave Comparison PWM,” in IEEE Symp. Personal Indoor and Mobile Radio Communications, 2007, pp. 1-5.
    [8] J. H. Chen, H. S. Yang, and Y. J. E. Chen, “A Multi-Level Pulse Modulated Polar Transmitter Using Digital Pulse-Width Modulation,” IEEE Microw. Wireless Compon. Lett., vol. 20, No. 5, pp. 295-297 , May 2010.
    [9] J. H. Chen, H. S. Yang, and Y. J. E. Chen, “A Technique for Implementing Wide Dynamic-Range Polar Transmitters,” IEEE Trans. on Microw. Theory and Tech., vol. 58, no. 9, pp. 2368-2374, Sept. 2010.
    [10] J. H. Chen, H. S. Yang, H.C. Lin, and Y. J. E. Chen, “A Polar-Transmitter Architecture Using Multiphase Pulsewidth Modulation,” IEEE Trans. Circuits and Syst. I. Reg. Papers, vol. 58, no. 2, pp. 244-252, Feb. 2011.
    [11] A. Dupuy, and Y. E. Wang, “High efficiency Power Transmitter Based on Envelope Delta-sigma Modulation (EDSM),” in IEEE 60th Vehicular Technology Conference, 2004, pp. 2092-2095.
    [12] J. Choi, J. Yim, J. Yang, J. Kim, J. Cha, D. Kang, D. Kim, and B. Kim, “A ΔΣ-Digitized polar RF Transmitter,” IEEE. Trans. on Microw. Theory and Tech., vol. 55, no. 12, pp. 2679-2690, Dec 2007.
    [13] J. Martires, S.B. Christensen, T. Larsen, “Envelope Signal Selective Emphasis in a Polar Radio Frequency Transmitter Architecture,” IET J. Circuits, Devices & Systems, vol. 2 , no. 6, pp. 509-517, Dec 2008.
    [14] W. Y. Kim, K. Y. Kim, S. T. Ryu, J. K. Jung, and C. S. Park, “1-bit and Multi-bit Envelope Delta-Sigma Modulators for CDMA Polar Transmitter,” in Asia-Pacific Microwave Conference., 2008, pp. 1.
    [15] A. Frappé, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An All-Digital RF Signal Generator Using High-Speed ΔΣ Modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722-2731, Oct. 2009.
    [16] A. Jerng, and C. G. Sodini, “A Wideband  Digital-RF Modulator for High Data Rate Transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1710-1722, Aug 2007.
    [17] I. Zhang, B. Shi, and Y. Lian, “Performance Evaluation on Polar Transmitters Using Delta and Delta-Sigma Modulations,” in Inter. Conf. on Information, Communications & Signal Processing, 2007, pp. 1-4.
    [18] Y. Yang, A. Chokhawala, M. Alexander, J. Melanson, and D. Hester, “A 114-dB 68-mW Chopper-Stabilized Stereo Multibit Audio ADC in 5.62 mm2,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2061-2068, Dec. 2003.
    [19] K. Lee, Q. Meng, T. Sugimoto,K. Hamashita, K. Takasuka, S. Takeuchi, U.-K. Moon, G. C. Temes, “A 0.8 V, 2.6 mW, 88 dB Dual-Channel Audio Delta-Sigma D/A Converter With Headphone Driver,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 916-927, Mar. 2009.
    [20] I. Galton, “Delta-Sigma Data Conversion in Wireless Transceivers,” IEEE J. Trans. on Microwave Theory and Techniques, vol. 50 , no. 1, pp. 302-314, Jan. 2002.
    [21] SAW / FBAR Devices, Datasheet, FAR-F5KA-836M50-D4DF, V2.1b, TAIYO YUDEN CO., LTD., Tokyo, Japan, Mar. 2010.
    [22] P. Madoglio, A. Ravi, L. Cuellar, S. Pellerano, P. Seddighrad, I. Lomeli, and Y. Palaskas, “A 2.5-GHz, 6.9-mW, 45-nm-LP CMOS, ΔΣ Modulator Based on Standard Cell Design With Time-Interleaving,” IEEE J. Solid-State Circuits, Vol. 45, no. 7, pp. 1410-1420, July 2010.
    [23] R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters, Wiley-IEEE Press, 2005
    [24] R.Jacob baker, CMOS: Mixed-Signal Circuit Design, Second Edition, Wiley-IEEE Press, 2009.
    [25] D. A. Johns, and K. Marting, Analog Integrated Circuit Design, WILEY, 1997.
    [26] CIC Referenced Flow for Cell-based IC Design, Technical Report, CIC-DSD-RD-08-01, V1.0, National Chip Implementation Center, Hsinchu, Taiwan, May 2008.
    [27] 王旭昇, Logic Synthesis with Design Compiler, CIC 訓練課程, 2010.
    [28] 詹慶達, Cell-Based IC Physical Design and Verification with IC Compiler, CIC 訓練課程, 2010.
    [29] 楊鈞麟, Design for Testability with DFT Compiler and TetraMAX, CIC 訓練課程, 2010.
    [30] 黃建霖, Timing and power sign-off with PrimeTime, CIC 訓練課程, 2010.
    [31] 陳泓烈, Verilog, CIC 訓練課程 2010.
    [32] 林俊賓, Post-Layout Simulation Verification with Nanosim, CIC 訓練課程 2010.
    [33] P. Eloranta, P. Seppinen, S. Kallioinen, T. Saarela, and A. Pärssinen, “A Multimode Transmitter in 0.13 μm CMOS Using Direct-Digital RF Modulator,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2774-2784, Dec. 2007.
    [34] ATF-511P8 High Linearity Enhancement Mode Pseudomorphic HEMT in 2x2 mm2 LPCC Package, Datasheet, 5988-8246EN 5989-0003EN, Avago Technologies, LTD., Tokyo, Japan, 2007.
    [35] Wideband, 40 dB Isolation at 1 GHz, CMOS 1.65 V to 2.75 V, SPST Switches, ADG901/ADG902, D03336–0–10/05(B), Analog Devices, 2005.
    [36] 施登耀, The Design and Implementation of Low-power High-performance Delta-Sigma Modulators for Audio Application, 國立臺灣師範大學應用電子科技研究所碩士論文, 2011.
    [37] Altera DE2-70 User Manual, V1.01, Terasic Technologies, 2007.
    [38] Altera DE2-115 User Manual, V1.02, Terasic Technologies, 2010.
    [39] THDB_ADA_UserGuide, V1.2.2, Terasic Technologies, 2008.

    下載圖示
    QR CODE