研究生: |
古芝綺 Ku, Chih-Chi |
---|---|
論文名稱: |
利用單分子螢光共振能量轉移光譜觀察鈉離子依賴性膽酸轉運蛋白(ASBT)的動態變化 Conformational Dynamics of the Apical Sodium-dependent Bile acid Transporter (ASBT) Studied by Single-Molecule Fluorescence Resonance Energy Transfer Spectroscopy |
指導教授: |
李以仁
Lee, I-Ren |
口試委員: |
胡念仁
Hu, Nien-Jen 孫英傑 Sun, Ying-Chieh |
口試日期: | 2021/08/17 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 鈉離子依賴性膽酸轉運蛋白(ASBT) 、腸肝循環 、高膽固醇血症 、單分子螢光共振能量轉移 |
英文關鍵詞: | Apical sodium-dependent bile acid transporter(ASBT), enterohepatic circulation, hypercholesterolemia, single-molecule fluorescence resonance energy transfer(smFRET) |
DOI URL: | http://doi.org/10.6345/NTNU202101169 |
論文種類: | 學術論文 |
相關次數: | 點閱:177 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈉離子依賴性膽酸轉運蛋白(Apical sodium-dependent bile acid transporter; ASBT)利用膜內外的鈉離子濃度梯度驅動運輸膽酸(bile acid),被認為是腸肝循環(enterohepatic circulation)中膽酸回收的第一步。抑制ASBT功能會減少膽酸的回收,導致膽酸的合成增加和降低膽固醇,可用於治療高膽固醇血症(hypercholesterolemia)。目前已有三種ASBT晶體結構被解出,分別為含有兩個鈉離子與一個受質結合的向內開口型(inward-facing),與沒有任何離子與受質的結合時,向內開口型及向外開口型(outward-facing)。然而,這些靜態結構不足以提供一個完整的運輸機制,我們利用單分子螢光共振能量轉移光譜觀察蛋白脂質體與微胞中ASBT的構型動力學。我們在實驗中觀察到可互相轉換的三種構型,其狀態轉變之動力學受溶液中的離子與膽酸濃度影響,可以提供膜蛋白更詳細的運輸機制。
Apical sodium-dependent bile acid transporter (ASBT) utilizes sodium gradient to transport bile acid and is considered the first step for bile acid reabsorption in the enterohepatic circulation. Inhibiting the ASBT function reduces the reabsorption of bile acid synthesized from cholesterol. Inhibition of ASBT promotes the synthesis of bile acid and reduction of cholesterol for the treatment of hypercholesterolemia. Three crystal structures of ASBT have been reported: Inward-open structure binding with bile acid taurocholate and two sodium cations was found in ASBT homolog from Neisseria meningitides (ASBTNM). Apo structures with inward- and outward-open structures were resolved in ASBT homolog from Yersinia frederiksenii (ASBTYF). However, these static structures are insufficient to provide a comprehensive transportation mechanism, which is expected to be highly dynamic. We utilize single-molecule fluorescence resonance energy transfer (smFRET) microscopy to observe the direct conformation dynamics in the micelle and proteoliposome. Our result revealed that there are transitions between three major conformations. Cation- (K+ and Na+), as well as the cargo- (taurocholate in Na+), dependent transition kinetics was observed. Thus, the direct observation of conformational change can provide more detailed information on the transport mechanism.
[1] Wallin, E.; von Heijne, G., Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7 (4), 1029-38.
[2] Stillwell, W., Chapter 19 - Membrane Transport. In An Introduction to Biological Membranes (Second Edition), Stillwell, W., Ed. Elsevier: 2016; pp 423-451.
[3] Perland, E.; Lekholm, E.; Eriksson, M. M.; Bagchi, S.; Arapi, V.; Fredriksson, R., The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis. PLoS One. 2016, 11 (6), e0156912.
[4] Lazaridis, K. N.; Pham, L.; Tietz, P.; Marinelli, R. A.; deGroen, P. C.; Levine, S.; Dawson, P. A.; LaRusso, N. F., Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest. 1997, 100 (11), 2714-21.
[5] Hofmann, A. F.; Hagey, L. R., Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008, 65 (16), 2461-83.
[6] Balakrishnan, A.; Polli, J. E., Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm. 2006, 3 (3), 223-30.
[7] Gonzalez, F. J., Nuclear receptor control of enterohepatic circulation. Compr Physiol. 2012, 2 (4), 2811-2828.
[8] Hepner, G. W.; Demers, L. M., Dynamics of the enterohepatic circulation of the glycine conjugates of cholic, chenodeoxycholic, deoxycholic, and sulfolithocholic acid in man. Gastroenterology. 1977, 72 (3), 499-501.
[9] Dawson, P. A.; Haywood, J.; Craddock, A. L.; Wilson, M.; Tietjen, M.; Kluckman, K.; Maeda, N.; Parks, J. S., Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem. 2003, 278 (36), 33920-7.
[10] Hu, N. J.; Iwata, S.; Cameron, A. D.; Drew, D., Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature. 2011, 478 (7369), 408-11.
[11] Xiao, L.; Pan, G., An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: The apical sodium-dependent bile acid transporter (SLC10A2/ASBT). Clin Res Hepatol Gastroenterol. 2017, 41 (5), 509-515.
[12] Arnett, D. K.; Jacobs, D. R., Jr.; Luepker, R. V.; Blackburn, H.; Armstrong, C.; Claas, S. A., Twenty-year trends in serum cholesterol, hypercholesterolemia, and cholesterol medication use: the Minnesota Heart Survey, 1980-1982 to 2000-2002. Circulation. 2005, 112 (25), 3884-91.
[13] Schwiesow, S. J.; Nappi, J. M.; Ragucci, K. R., Assessment of compliance with lipid guidelines in an academic medical center. Ann Pharmacother. 2006, 40 (1), 27-31.
[14] West, K. L.; Zern, T. L.; Butteiger, D. N.; Keller, B. T.; Fernandez, M. L., SC-435, an ileal apical sodium co-dependent bile acid transporter (ASBT) inhibitor lowers plasma cholesterol and reduces atherosclerosis in guinea pigs. Atherosclerosis. 2003, 171 (2), 201-210.
[15] Ge, M. X.; Niu, W. X.; Ren, J. F.; Cai, S. Y.; Yu, D. K.; Liu, H. T.; Zhang, N.; Zhang, Y. X.; Wang, Y. C.; Shao, R. G.; Wang, J. X.; He, H. W., A novel ASBT inhibitor, IMB17-15, repressed nonalcoholic fatty liver disease development in high-fat diet-fed Syrian golden hamsters. Acta Pharmacol Sin. 2019, 40 (7), 895-907.
[16] Trauner, M.; Meier, P. J.; Boyer, J. L., Molecular pathogenesis of cholestasis. N Engl J Med. 1998, 339 (17), 1217-27.
[17] Mittermayer, F.; Caveney, E.; De Oliveira, C.; Gourgiotis, L.; Puri, M.; Tai, L. J.; Turner, J. R., Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr Diabetes Rev. 2015, 11 (1), 17-31.
[18] Plaisancié, P.; Dumoulin, V.; Chayvialle, J. A.; Cuber, J. C., Luminal glucagon-like peptide-1(7-36) amide-releasing factors in the isolated vascularly perfused rat colon. J Endocrinol. 1995, 145 (3), 521-6.
[19] Wu, Y.; Aquino, C. J.; Cowan, D. J.; Anderson, D. L.; Ambroso, J. L.; Bishop, M. J.; Boros, E. E.; Chen, L.; Cunningham, A.; Dobbins, R. L.; Feldman, P. L.; Harston, L. T.; Kaldor, I. W.; Klein, R.; Liang, X.; McIntyre, M. S.; Merrill, C. L.; Patterson, K. M.; Prescott, J. S.; Ray, J. S.; Roller, S. G.; Yao, X.; Young, A.; Yuen, J.; Collins, J. L., Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J Med Chem. 2013, 56 (12), 5094-114.
[20] Drew, D.; Boudker, O., Shared Molecular Mechanisms of Membrane Transporters. Annu Rev Biochem. 2016, 85, 543-72.
[21] Karpowich, N. K.; Wang, D. N., Structural biology. Symmetric transporters for asymmetric transport. Science. 2008, 321 (5890), 781-2.
[22] Forrest, L. R.; Rudnick, G., The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda). 2009, 24, 377-386.
[23] Forrest, L. R.; Zhang, Y.-W.; Jacobs, M. T.; Gesmonde, J.; Xie, L.; Honig, B. H.; Rudnick, G., Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci. 2008, 105 (30), 10338-10343.
[24] Zhou, X.; Levin, E. J.; Pan, Y.; McCoy, J. G.; Sharma, R.; Kloss, B.; Bruni, R.; Quick, M.; Zhou, M., Structural basis of the alternating-access mechanism in a bile acid transporter. Nature. 2014, 505 (7484), 569-73.
[25] Hardy, D.; Bill, R. M.; Jawhari, A.; Rothnie, A. J., Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochem Soc Trans. 2016, 44 (3), 838-44.
[26] Dulin, D.; Lipfert, J.; Moolman, M. C.; Dekker, N. H., Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat Rev Genet. 2013, 14 (1), 9-22.
[27] Hochreiter, B.; Garcia, A. P.; Schmid, J. A., Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors (Basel). 2015, 15 (10), 26281-314.
[28] Ishikawa-Ankerhold, H. C.; Ankerhold, R.; Drummen, G. P. C., Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 2012, 17 (4), 4047-4132.
[29] Fish, K. N., Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom. 2009, Chapter 12, Unit12.18.
[30] 李以仁; 許顥頤; 秦志皞; 吳佳諭, 單分子螢光共振能量轉移光譜簡介. 化學. 2015, 73 (4), 303-312.
[31] 黃子芸. 利用單分子技術研究小腦失調症第31型特殊連續TGGAA重複序列結構動態學. 國立中興大學, 2016.
[32] van Geest, M.; Lolkema, J. S., Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev. 2000, 64 (1), 13-33.
[33] Erkens, G. B.; Hänelt, I.; Goudsmits, J. M.; Slotboom, D. J.; van Oijen, A. M., Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature. 2013, 502 (7469), 119-23.
[34] Akyuz, N.; Georgieva, E. R.; Zhou, Z.; Stolzenberg, S.; Cuendet, M. A.; Khelashvili, G.; Altman, R. B.; Terry, D. S.; Freed, J. H.; Weinstein, H.; Boudker, O.; Blanchard, S. C., Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature. 2015, 518 (7537), 68-73.
[35] Zhao, Y.; Terry, D.; Shi, L.; Weinstein, H.; Blanchard, S. C.; Javitch, J. A., Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature. 2010, 465 (7295), 188-93.
[36] Cordes, T.; Vogelsang, J.; Tinnefeld, P., On the mechanism of Trolox as antiblinking and antibleaching reagent. J Am Chem Soc. 2009, 131 (14), 5018-9.
[37] Aitken, C. E.; Marshall, R. A.; Puglisi, J. D., An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J. 2008, 94 (5), 1826-35.
[38] Lu, P. H.; Li, C. C.; Chiang, Y. W.; Liu, J. H.; Chiang, W. T.; Chao, Y. H.; Li, G. S.; Weng, S. E.; Lin, S. Y.; Hu, N. J., Dissecting the Conformational Dynamics of the Bile Acid Transporter Homologue ASBT(NM). J Mol Biol. 2021, 433 (4), 166764.