簡易檢索 / 詳目顯示

研究生: 張舜為
Shun-Wei Chang
論文名稱: 在完備黎曼流形上針對熱方程的哈納克不等式
Harnack Inequality for The Heat Equation on A Complete Riemannian Manifold
指導教授: 陳瑞堂
Chen, Jui-Tang
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 93
中文關鍵詞: 哈納克不等式體積倍增條件s-型覆蓋惠特尼型覆蓋弱 L2 龐加萊不等式加權龐加萊不等式納許不等式索伯列夫不等式底律雷特熱方程均值不等式反向赫爾德不等式莫澤迭代法
英文關鍵詞: Harnack inequality, volume doubling condition, s-packing covering, Whitney type covering, weak L2 Poincaré inequality, weighted Poincaré inequality, Nash inequality, Sobolev inequality, Dirichlet heat equation, mean value inequality, reverse Hölder inequality, Moser’'s iteration
論文種類: 學術論文
相關次數: 點閱:114下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 設 M 是一個光滑且連通的完備非緊緻黎曼流形. 若 M 滿足體積倍增條件和弱 L2 龐加萊不等式的話, 則針對底律雷特熱方程正解的哈納克不等式成立. 本論文主要探討這個定理. 基本上, 本論文可分成四個部分. 第一部分討論具有體積倍增條件和弱 L2 龐加萊不等式的流形上的一些重要性質. 第二部分則利用這些性質證明納許不等式和索伯列夫不等式. 第三部分著重在底律雷特熱方程的 subsolutions 和 supersolutions 並分別從這兩種類型的解中萃取出均值不等式及逆赫爾德不等式. 最後一部分則運用了在前三個部份中所獲得的工具來完成本論文主要定理的證明.

    Let M be a smooth connected complete non-compact Riemannian manifold. If M satisfies the volume doubling condition (VDC) and the weak L2 Poincaré inequality (WPI), then the Harnack inequality for positive solutions to the Dirchlet heat equation holds on M. This is the main theorem in this paper. Basically, This paper can be seperated into four part. The first part discusses some important and useful properties on the manifold equipped with both VDC and WPI. The second part utilizes those properties to establish the Nash inequality and the Sobolev inequality. The third part focuses on subsolutions and supersolutions to the Dirichlet heat equation, and extracts the mean value inequality and the reverse Hölder inequality from them respectively. The last part applies all the tools obtained in previous parts to show the proof of the main theorem in this paper.

    0 Introduction 1 1 Volume doubling condition and two types of covering 1 1.1 Volume doubling condition .......................... 1 1.2 s-packing covering ................................. 2 1.3 Whitney-type covering .............................. 5 2 Poincaré inequality and weighted Poincaré inequality 13 3 Nash inequality and Sobolev inequality 27 3.1 Nash inequality .................................... 27 3.2 Heat kernel upper bound and Sobolev inequality ..... 35 4 Subsolutions and supersolutions for the heat equation 50 4.1 Subsolutions ....................................... 51 4.2 Supersolutions ..................................... 59 5 Harnack inequality for the heat equation 80 Bibliography 87

    [1] A. Grigor’yan, The heat equation on non-compact Riemannian manifolds, (in Russian) Matem. Sbornik, 182 (1991) no.1, 55-87. Engl. transl.: Math. USSR Sb., 72 (1992) no.1, 47-77.
    [2] A. Grigor’yan, Heat Kernel and Analysis on Manifolds, Providence, R.I.: American Mathematical Society, 2009.
    [3] A. Grigor’yan, Heat Kernels on Weighted Manifolds and Applications, Contemporary Mathematics, 398 (2003) 143-172.
    [4] A. Young, Eigenvalues and the Heat Kernel, unpublished, 2003.
    [5] C. J. Sung, Lecture Notes on Heat Kernels, unpublished, 1998.
    [6] D. Jerison, The Poincaré inequality for vector …elds satisfying Hörmander’s condition, Duke Math. J. vol. 53, 1986, 503-523.
    [7] E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, 1989.
    [8] E. M. Stein, Singular integrals and di¤erentiability properties of functions, Princeton, N.J.: Princeton University Press, 1970.
    [9] I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, vol. 115, Academic Press Inc., Orlando, FL, 1984.
    [10] I. Chavel, Riemannian Geometry - A Modern Introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993.
    [11] J. Moser, A Harnack inequality for parabolic di¤erential equations, Comm. Pure Appl. Math., 17 (1964) 101-134. Correction: Comm. Pure Appl. Math., 20 (1967) 231-236.
    [12] Kensuke Onishi, Jin-ichi Itoh, Estimation of the necessary number of points in Riemannian Voronoi diagram, 15th Canadian Conference on Computational Geometry, 2003.
    [13] L. Saloff-Coste, Aspects of Sobolev inequalities, LMS Lecture Notes Series 289, Cambridge Univ. Press, 2002.
    [14] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices 1992, no. 2, 27-38.
    [15] N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal., 63 (1985) no.2, 240-260.
    [16] P. Li, R. Schoen, Lp and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math., 153 (1984) 279-301.
    [17] P. Li, L. Karp, The heat equation on complete Riemannian manifolds, unpublished, 1983.
    [18] P. Li, Harmonic functions and applications to complete manifolds, unpublished, 2004.
    [19] P. Li, Harmonic functions on complete Riemannian Manifolds. “Handbook of Geometric Analysis, No. 1”Advanced Lectures in Mathematics, Vol. 7 (2008), International Press.
    [20] P. Li, Lecture Notes on Geometric Analysis, Lecture Notes Series No. 6 - Research Institute of Mathematics and Global Analysis Research Center, Seoul National University, Seoul, 1993.
    [21] P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, vol. 134, 2012.
    [22] Pierre H. Bérard, Spectral Geometry: Direct and Inverse Problems, Springer, 1986.
    [23] Qi S. Zhang, Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincaré Conjecture. CRC Press, 2010.
    [24] Richard Schoen, Shing-Tung Yau, Lectures on Di¤erential Geometry, International Press, 1994.

    下載圖示
    QR CODE