簡易檢索 / 詳目顯示

研究生: 李岳龍
Yueh-Long Lee
論文名稱: 高解析度數位全像顯微系統之研究
A Study on High-resolution Digital Holographic Microscope System
指導教授: 鄭超仁
Cheng, Chau-Jern
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 數位全像術三維表面輪廓儀單模雷射縱向解析度橫向超高解析度
英文關鍵詞: Digital holography, 3-D surface profiler, Single-mode laser, Axial resolution, Superresolution
論文種類: 學術論文
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中主要針對反射式數位全像顯微系統與如何提升數位全像顯微系統的縱向解析度與橫向解析度來進行深入的探討與研究。首先探討有關於反射式數位全像顯微系統拍攝樣本時物鏡的收光問題,系統量測特性與參數,以及量測各種樣本的三維表面輪廓,並與市面上的三維表面輪廓儀(白光干涉儀)比較其系統之間的差異性。接著主要研究工作為探討雷射光源對於離軸式數位全像顯微術之縱向解析度的影響,並考慮在波長穩定雷射光譜下的相位量測表現。在計算系統相位精準度的過程中,當我們使用空間平均與時間平均兩種平均系統相位誤差的方法時,結果發現單模態雷射與多模態雷射之同調特性對於重建相位精準度的影響與差異,進而可將波長穩定技術運用於雷射二極體的單模操作狀態使得數位全像顯微系統的縱向解析度得以提升至次奈米(< 1nm)等級。另一個研究主題為提升系統的橫向解析度,主要是利用合成孔徑原理來進行橫向超高解析度的角度多工推導與模擬,由電腦模擬結果證實使用物光與參考光同時角度多工技術,此時只需拍攝一張數位全像片,即可以達到橫向超高解析度。

    In this study, we investigate the imaging properties of reflection-type digital holographic microscopy (DHM) system and how to improve the axial resolution and lateral resolution in the DHM system. First, we study the acceptable radius of curvature and the maximum height of the sample are restricted to the objective lens of reflection-type DHM. Then we present a full-field three-dimensional surface profile technique for measuring the topography of sample. We also describe the influence of coherent illumination on phase measurement accuracy in DHM. To improve net phase accuracy, the spatial and temporal averaging techniques are applied simultaneously to suppress the phase noises caused by the light source and CCD image sensor. A comparison between a laser diode operated in single- and multi-modes on the fringe visibility and the reconstructed phase accuracy is given. Axial sub-nanometer accuracy in DHM is performed using a wavelength-stabilized laser diode in single-mode operation. Another research work is to improve the lateral resolution of the DHM system using synthetic aperture technique. Simulated results show that the angular-multiplexed synthetic aperture can reach superresolution imaging by one-shot in DHM system.

    目 錄 中文摘要....................................................I 英文摘要...................................................II 目錄.....................................................III 圖目錄..................................... ...............IV 表目錄.....................................................IX 第一章 緒論.......................................................1 1.1數位全像顯微術的發展及現況..................................1 1.2研究動機及挑戰............................................6 1.3文獻分析.................................................8 1.3.1縱向解析度的技術與問題....................................8 1.3.2橫向解析度的技術與問題...................................11 1.4論文架構................................................15 第二章 反射式數位全像顯微術.........................................16 2.1反射式數位全像顯微術之記錄與重建.............................16 2.1.1記錄程序..............................................16 2.1.2重建程序..............................................18 2.2反射式數位全像顯微系統.....................................20 2.2.1系統架構..............................................20 2.2.2系統參數與特性分析......................................22 2.3實驗結果................................................25 2.4 白光干涉儀與反射式數位全像顯微術之特性分析..........................39 第三章 縱向高解析度技術......................................................................................45 3.1 縱向解析度原理..................................................................................45 3.2 雷射光源之同調特性與影響..............................................................50 3.3 多模態與單模態雷射光源之同調測試..............................................55 第四章 橫向超高解析度技術...........................................63 4.1 合成孔徑橫向超高解析度之原理........................................................63 4.2合成孔徑模擬結果與分析.....................................70 第五章 結論與未來展望..............................................76

    參考文獻
    [1] T. C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, New York, 2006).
    [2] Dennis Gabor, “A new microscope principle,” Nature, 161, 777-778 (1948).
    [3] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41(25), 5367-5375 (2002).
    [4] T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,”Opt. Lett. 23, 1221-1223 (1998).
    [5] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
    [6] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
    [7] Y. C. Lin and C. J. Cheng, “Determining refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12, 115402 (2010).
    [8] Y. C. Lin, C. J. Cheng and T.-C. Poon, “Optical sectioning with a low coherence phase-shifting digital holographic microscope,” Appl. Opt. 50(7), B25-B30 (2011).
    [9] F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Exp. 15, 8818-8831 (2007).
    [10] Xiao lei Wang, Hong chen Zhai, and Guoguang Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31(11), 1636-1638 (2006).
    [11] Cao jin Yuan, Hong chen Zhai, and Hai tao Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33(20), 2356-2358 (2008).
    [12] Vicente Mico, Zeev Zalevsky, Pascuala García-Martínez and Javier García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162-3170 (2006).
    [13] Vicente Mico, Zeev Zalevsky, Pascuala García-Martínez and Javier García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45(5), 822-828 (2006).
    [14] Luis Granero, Zeev Zalevsky, and Vicente Mico, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36(7), 1149-1151 (2011).
    [15] J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
    [16] Y. L. Lee and C. J. Cheng, “Three-dimensional surface imaging by reflection digital holographic microscopy,” International Photonics Conference (IPC2011), Tainan, Taiwan, 2011.
    [17] T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840-1842 (2010).
    [18] L. Deck and P. D. Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334-7338 (1994).
    [19] S. W. Kim and G. H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38, 5968-5973 (1999).
    [20] F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 949–983 (2003).
    [21] 焦國華, 李育林, 胡寶文, “Mirau相移干涉法測量微透鏡陣列面形,” 光子學報 36(10), 1924-1927 (2007)
    [22] K. Takada, A. Himeno, and K. Yukimatsu, “Phase noise and shot noise limited operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483-2485 (1991).
    [23] V. V. Spirin, C .A. Lopez-Mercado, P. Megret, and A .A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9, 377-380 (2012).
    [24] G. J. Steckman, L. Wenhai, R. Platz, D. Schroeder, C. Moser,and F. Havermeyer, “Volume Holographic Grating Wavelength Stabilized Laser Diodes,” IEEE J. Sel. Top. Quant. 13, 672 (2007).
    [25] J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall, New Jersey, 1995).
    [26] O. Monnom, F. Dubois, C. Yourassowsky, and J. C., “Legros, Improvement in visibility of an in-focus reconstructed image in digital holography by reduction of the influence of out-of-focus objects,” Appl. Opt. 44, 3827 (2005).
    [27] D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51 (2004).
    [28] J K¨uhn, F Charri`ere, T Colomb, E Cuche, F Montfort, Y Emery, P Marquet and C Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).
    [29] Florian Charrière, Tristan Colomb, Frédéric Montfort, Etienne Cuche, Pierre Marquet, and Christian Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45(29), 7667-7673 (2006).
    [30] H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29, 2399-2401 (2004).
    [31] C. Remmersmann, S. Sturwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt.48, 1463–1472 (2009).
    [32] Jürgen H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179-2181 (2002).
    [33] Luis Granero, Vicente Micó, Zeev Zalevsky, and Javier García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49(5), 845-857 (2010).
    [34] Vicente Mico, Zeev Zalevsky, Javier Garcı´a, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Optics Communications 276, 209–217 (2007).
    [35] Xiao lei Wang, Hong chen Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing”, Optics Communications 275, 42-45 (2007).
    [36] Hao feng Hu, Xiao lei Wang, Hong chen Zhai, Nan Zhang, and Pan Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Applied Physics Letters 97, 061117- (2010).
    [37] Hao feng Hu, Xiao lei Wang, Hong chen Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124-127 (2011).

    無法下載圖示 本全文未授權公開
    QR CODE