研究生: |
謝文昊 Hsieh, Wen-Hao |
---|---|
論文名稱: |
GR多肽與其上游C9ORF72基因的動態交互作用 Dynamic Interactions between Poly-GR Peptide and its Upstream C9ORF72 Gene |
指導教授: |
李以仁
Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 肌萎縮性脊髓側索硬化症 、額顳葉失智症 、C9ORF72 、六核苷酸重複序列擴張 、單分子螢光共振能量轉移 、二肽重複蛋白 |
英文關鍵詞: | ALS, FTD, C9ORF72, hexanucleotide repeat expansions, smFRET, DPR proteins |
DOI URL: | http://doi.org/10.6345/NTNU201900426 |
論文種類: | 學術論文 |
相關次數: | 點閱:223 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
位於人類第9對染色體第72開放讀框 (Chromosome 9 open reading frame 72, C9ORF72) 基因的內顯子片段中,GGGGCC六核苷酸重複序列的擴張,被認為與家族性遺傳的肌萎縮性脊髓側索硬化症 (Amyotrophic lateral sclerosis, ALS) 以及額顳葉失智症 (Frontotemporal dementia, FTD) 神經退化性疾病的發作有高度的相關性。正常人該區塊擁有的GGGGCC序列重複次數低於20至25以下,然而患者被發現該序列重複次數高達到數十至數百。根據先前研究指出,GGGGCC的重複序列能以折疊方式形成多樣二級結構,這些二級結構會導致在轉錄時該重複序列擴張,亦或大量的RNA結合蛋白與RNA片段聚集形成RNA灶 (foci),使RNA結合蛋白功能失調,另外,轉譯時亦會因為其二級結構誘發非正常轉譯進行,進而產生二肽重複蛋白,這些二肽重複蛋白透過錯誤折疊堆積造成毒性,這兩方面因素對C9ORF72導致的ALS和FTD患者發病過程造成主要的影響。
在本篇論文中,利用單分子螢光共振能量轉移 (Single molecule fluorescence resonance energy transfer, smFRET) 光譜,研究d(GGGGCC) 重複序列的結構,觀測該序列與其自身能轉譯出的二肽重複蛋白之間的交互作用,實驗結果發現重複次數超過20以上帶正電的二肽重複蛋白 (GR)n 會與d(GGGGCC)n 產生作用並對於序列及結構擁有專一性,會針對d(GGGGCC)n 髮夾型的二級結構造成影響,結構的變化會隨時間逐漸恢復至穩定狀態,然而恢復的時間長短受 (GR)n 添加的濃度影響,由此推斷 (GR)n 可能藉由與d(GGGGCC)n 交互作用後以某種形式被消耗掉,並且 (GR)n 反應後的產物不會再與d(GGGGCC)n 的二級結構進行反應。
Hexanucleotide sequence GGGGCC repeat expansion in Chromosome 9 open reading frame 72 (C9ORF72) intron is considered to be the most frequent cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) which are severe neurodegenerative diseases. The number of GGGGCC sequence repeat units in patients is believed to be at least several tens to hundreds of, compared with fewer than 20 to 25 in healthy controls. The GGGGCC repeats could fold into different secondary structures leading repeat sequence expansion or sequestration of RNA binding proteins by repeat-expanded RNA forming toxic RNA foci, during transcription. In the translation step, the secondary structures would also induce repeat-associated non-ATG (RAN) translation. This noncanonical translation would generate dipeptide repeat (DPR) proteins forming intracellular aggregates.
Here, we use single-molecule fluorescence resonance energy transfer (smFRET) spectroscopy to study the interaction between DPR proteins and d(GGGGCC)n through DNA secondary structure conformational change. The results show that the positive charge dipeptide (GR)n repeats number over 20 have interaction with d(GGGGCC)n and specificity to sequence and structure. Effect on the hairpin structure would gradually recover and back to steady state over time controlled by (GR)n concentration. It seems that (GR)n is consumed and the product would not have reaction with d(GGGGCC)n secondary structure.
1. McDermott, C. J.; Shaw, P. J., Diagnosis and management of motor neurone disease. Bmj-Brit Med. J. 2008, 336 (7645), 658-662.
2. Wijesekera, L. C.; Leigh, P. N., Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009, 4.
3. Krueger, C. E.; Bird, A. C.; Growdon, M. E., et al., Conflict monitoring in early frontotemporal dementia. Neurology 2009, 73 (5), 349-355.
4. Finger, E. C., Frontotemporal Dementias. Continuum (Minneap Minn) 2016, 22 (2 Dementia), 464-489.
5. DeJesus-Hernandez, M.; Mackenzie, I. R.; Boeve, B. F., et al., Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72 (2), 245-256.
6. Renton, A. E.; Majounie, E.; Waite, A., et al., A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 2011, 72 (2), 257-268.
7. Majounie, E.; Renton, A. E.; Mok, K., et al., Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 2012, 11 (4), 323-330.
8. Gijselinck, I.; Van Mossevelde, S.; van der Zee, J., et al., The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol Psychiatr 2016, 21 (8), 1112-1124.
9. Ling, S. C.; Polymenidou, M.; Cleveland, D. W., Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis. Neuron 2013, 79 (3), 416-438.
10. Lee, S.; Huang, E. J., Modeling ALS and FTD with iPSC-derived neurons. Brain Res 2017, 1656, 88-97.
11. Woollacott, I. O. C.; Mead, S., The C9ORF72 expansion mutation: gene structure, phenotypic and diagnostic issues. Acta Neuropathol 2014, 127 (3), 319-332.
12. Ashley, E. A., Towards precision medicine. Nat Rev Genet 2016, 17 (9), 507-522.
13. Verkerk, A. J. M. H.; Pieretti, M.; Sutcliffe, J. S., et al., Identification of a Gene (Fmr-1) Containing a Cgg Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length Variation in Fragile-X Syndrome. Cell 1991, 65 (5), 905-914.
14. Orr, H. T.; Chung, M. Y.; Banfi, S., et al., Expansion of an Unstable Trinucleotide Cag Repeat in Spinocerebellar Ataxia Type-1. Nat Genet 1993, 4 (3), 221-226.
15. Kawaguchi, Y.; Okamoto, T.; Taniwaki, M., et al., Cag Expansions in a Novel Gene for Machado-Joseph Disease at Chromosome 14q32.1. Nat Genet 1994, 8 (3), 221-228.
16. Ansorge, O.; Giunti, P.; Michalik, A., et al., Ataxin-7 aggregation and ubiquitination in infantile SCA7 with 180 CAG repeats. Ann Neurol 2004, 56 (3), 448-452.
17. Macdonald, M. E.; Ambrose, C. M.; Duyao, M. P., et al., A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntingtons-Disease Chromosomes. Cell 1993, 72 (6), 971-983.
18. Mirkin, S. M., Expandable DNA repeats and human disease. Nature 2007, 447 (7147), 932-940.
19. McMurray, C. T., Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 2010, 11 (11), 786-799.
20. Kumar, V.; Kashav, T.; Islam, A., et al., Structural insight into C9orf72 hexanucleotide repeat expansions: Towards new therapeutic targets in FTD-ALS. Neurochem Int 2016, 100, 11-20.
21. Vatovec, S.; Kovanda, A.; Rogelj, B., Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging 2014, 35 (10).
22. Gitler, A. D.; Tsuiji, H., There has been an awakening: Emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res 2016, 1647, 19-29.
23. Mizielinska, S.; Isaacs, A. M., C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function? Curr Opin Neurol 2014, 27 (5), 515-523.
24. Cooper-Knock, J.; Higginbottom, A.; Stopford, M. J., et al., Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol 2015, 130 (1), 63-75.
25. Ash, P. E. A.; Bieniek, K. F.; Gendron, T. F., et al., Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS. Neuron 2013, 77 (4), 639-646.
26. Green, K. M.; Linsalata, A. E.; Todd, P. K., RAN translation-What makes it run? Brain Res 2016, 1647, 30-42.
27. Mori, K.; Weng, S. M.; Arzberger, T., et al., The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS. Science 2013, 339 (6125), 1335-1338.
28. Cheng, W. W.; Wang, S. P.; Mestre, A. A., et al., C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2 alpha phosphorylation. Nat Commun 2018, 9.
29. Wang, Z. F.; Ursu, A.; Childs-Disney, J. L., et al., The Hairpin Form of r(G(4)C(2))(exp) in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell Chem Biol 2019, 26 (2), 179-+.
30. Jackson, M. P.; Hewitt, E. W., Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem 2016, 60 (2), 173-180.
31. Ritort, F., Single-molecule experiments in biological physics: methods and applications. J Phys Condens Matter 2006, 18 (32), R531-83.
32. Loeff, L.; Brouns, S. J. J.; Joo, C., Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps. Mol Cell 2018, 70 (3), 385-394 e3.
33. Vale, R. D., Microscopes for fluorimeters: the era of single molecule measurements. Cell 2008, 135 (5), 779-85.
34. 李以仁; 許顥頤; 秦志皞, et al., 單分子螢光共振能量轉移光譜簡介. 化學 2015, 73 (4), 303-312.
35. 倪丞緯. 以單分子光譜觀測 CTG 重複序列的滑動現象. 國立臺灣師範大學化學系碩士論文,台北市, 2017.
36. 黃子芸. 利用單分子技術研究小腦失調症第31型特殊連續TGGAA重複序列結構動態學. 國立中興大學基因體暨生物資訊學研究所碩士論文,台中市, 2016.
37. 秦志皞. 脊髓小腦萎縮症31型相關基因連續TGGAA序列之結構和動力學研究. 國立臺灣師範大學化學系碩士論文,台北市, 2016.
38. 丁建棋. 以單分子螢光共振能量轉移研究造成肌萎縮性脊髓側索硬化症與額顳葉癡呆症的GGGGCC重複序列其結構間的動力學. 國立臺灣師範大學化學系碩士論文,台北市, 2018.
39. Koirala, D.; Dhakal, S.; Ashbridge, B., et al., A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 2011, 3 (10), 782-7.
40. de Koker, T. H.; Mozuch, M. D.; Cullen, D., et al., Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Appl Environ Microbiol 2004, 70 (10), 5794-800.
41. Cordes, T.; Vogelsang, J.; Tinnefeld, P., On the mechanism of Trolox as antiblinking and antibleaching reagent. J Am Chem Soc 2009, 131 (14), 5018-9.
42. McKinney, S. A.; Joo, C.; Ha, T., Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 2006, 91 (5), 1941-51.