簡易檢索 / 詳目顯示

研究生: 翁綺婕
Weng, Chi-Chieh
論文名稱: 使用雜訊移頻逐次逼近暫存技術之 2+1 SMASH 調變器的設計與實現
Design and Implementation of a 2+1 SMASH Modulator with Noise-Shaping SAR Technique
指導教授: 郭建宏
Kuo, Chien-Hung
口試委員: 郭建宏
Kuo, Chien-Hung
陳建中
Chen, Jiann-Jong
黃育賢
Hwang, Yuh-Shyan
口試日期: 2024/07/03
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 95
中文關鍵詞: 類比數位轉換器三角積分調變器雜訊移頻逐次逼近式類比數位轉換 器分散式回授級聯積分器強健式多級雜訊移頻
英文關鍵詞: Analog-to-digital converter, Delta-sigma-modulator, Noise-shaping successive approximation register ADC, Cascade of integrators feedback(CIFB), Sturdy MASH
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401950
論文種類: 學術論文
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類比數位轉換器(ADC)是一個將類比訊號轉換成數位訊號的裝置,在各種電子應用中至關重要。ADC的應用範圍極廣,從音頻處理到數據通訊、感測器信號處理,再到醫療器材等領域,效能通常以解析度和取樣率來衡量,解析度代表它能夠區分的細節程度,而取樣率則是它每秒能夠處理的樣本數。三角積分調變器(Delta Sigma Modulation)是一種熱門的ADC,利用超取樣和雜訊移頻技術來實現高解析度,其核心概念是利用超取樣來提升訊號的解析度,同時通過雜訊移頻將雜訊從訊號頻帶內移至高頻部分。這種特性使DSM在處理小信號和高精度要求的應用中具有優勢。它常見於音頻設備、精密儀器、通信系統以及其他需要高解析度和低雜訊的應用中。
    本文介紹了一種操作在1.7V電壓下的離散時間CIFB2+1雜訊移頻逐次逼近式類比數位轉換器。通過採用SMASH架構來解決單一迴路在實施高階時所面臨的穩定性問題,該轉換器有效地消除了雜訊並提高了性能。此外,我們提出了一種新穎的雙階段量化技術來提高線性度,通過減少參考電壓之間的差異,實現了比預期更佳的解析度,這種設計有效地避免對於訊號擺幅增大時面臨的非線性問題。該電路使用NS SAR ADC進行量化,並對上一次DAC電容切換後的殘留電壓進行運算,以降低比較器雜訊、DAC的settling error和mismatch對電路效能的影響。所呈現的三角積分調變器採用0.18-μm CMOS製程技術製造。基於20-kHz頻寬和7 MHz取樣頻率,晶片量測結果下,SNDR達到76.1 dB,而在1.7V的供應電壓下功耗為267μW,Schreier figure-of-merit(FoMs)為157.6dB。

    An Analog-to-Digital Converter (ADC) is a device that converts analog signals into digital signals, playing a crucial role in various electronic applications. The applications of ADCs are extensive, ranging from audio processing to data communications, sensor signal processing, and medical instruments. The performance of an ADC is typically measured in terms of resolution and sampling rate, where resolution represents the level of detail it can distinguish, and sampling rate is the number of samples it can process per second. Delta Sigma Modulation (DSM) is a popular type of ADC that achieves high resolution by utilizing oversampling and noise shaping techniques. The core concept of DSM is to enhance signal resolution through oversampling while pushing the noise out of the signal band to higher frequencies via noise shaping. This feature makes DSM advantageous in applications requiring the handling of small signals and high precision. It is commonly used in audio equipment, precision instruments, communication systems, and other applications that demand high resolution and low noise.
    This paper introduces a discrete-time CIFB 2+1 noise-shaping successive approximation register (SAR) ADC operating at a voltage of 1.7V. By adopting the SMASH architecture, this converter effectively addresses the stability issues faced by single-loop implementations at higher orders, thereby eliminating noise and enhancing performance. Furthermore, we propose a novel two-stage quantization technique to improve linearity by reducing the difference between reference voltages, achieving better-than-expected resolution. This design effectively avoids nonlinearity issues encountered with increased signal swing.
    The circuit uses an NS SAR ADC for quantization and processes the residue voltage after the previous DAC capacitor switching to mitigate the impact of comparator noise, DAC settling errors, and mismatches on the circuit's performance. The presented DSM is fabricated using 0.18-μm CMOS technology.In a circuit implementation based on a 20-kHz bandwidth and a 7 MHz sampling frequency, the Signal-to-Noise and Distortion Ratio (SNDR) reaches 76.1 dB, with a power consumption of 267 μW at a supply voltage of 1.7V. The Schreier figure-of-merit (FoMs) is 157.6 dB.

    謝   辭 i 摘   要 ii ABSTRACT iv 目   錄 vi 表 目 錄 x 圖 目 錄 xi 第一章  緒論 1 1.1  研究動機與背景 1 1.2  數據轉換器概述 2 1.3  論文組成 3 第二章  概論 4 2.1  前言 4 2.2  類比數位轉換器類型及應用 5 2.3  效能標準之動態參數 6 2.3.1  解析度 6 2.3.2  訊號雜訊比 7 2.3.3  有效位元數 7 2.3.4  動態範圍 8 2.3.5  品質因數指標 8 2.4  量化器和量化雜訊 9 2.4.1 量化誤差之分析 10 2.5  三角積分調變器(DELTA-SIGMA MODULATOR)之原理 12 2.5.1  超取樣率技術 13 2.5.2  雜訊移頻技術 15 2.5.3  低通一階三角積分調變器 15 2.5.4  低通高階三角積分調變器 18 2.6  閉迴路系統 19 2.6.1  單迴路系統 20 2.6.2  多重迴路架構架構 20 2.6.3  強健式多級雜訊移頻架構 21 2.7  逐次逼近式類比數位轉換器(SAR ADC)之原理 23 第三章  電路元件設計及其應用 26 3.1  基本電路元件應用 26 3.2  取樣保持電路 26 3.3  開關電路 27 3.3.1  MOSFET開關 27 3.3.2  互補式傳輸閘開關 28 3.3.3  靴帶式開關 29 3.4  交換電容電路之原理 32 3.4.1  交換電容式積分器 32 3.5  比較器 36 3.6  真單相位時脈電路(TSPC) 37 3.7  逐次逼近式暫存器 38 3.8  移位暫存器 38 3.9  數位類比轉換器 40 3.9.1  電容式數位類比轉換器 41 第四章 使用雜訊移頻逐次逼近暫存式之線性增強2+1 SMASH類比數位轉換器的設計與實現 43 4.1  三角積分調變器架構考量 43 4.2  雜訊移頻SAR ADC 43 4.3   2+1 CIFB回授強健式多級雜訊移頻架構 44 4.4  線性模型之MATLAB模擬 46 4.5  電路架構 47 4.5.1  雜訊移頻SAR ADC 47 4.5.2  訊號線性度之增強 49 4.5.3  電容陣列之設計 55 4.5.4  無加法器求和電路 55 4.5.5  比較器非同步時脈 56 4.5.6  時脈產生器實現 58 4.5.7  傳輸閘同步時脈實現 59 4.6  電路運算放大器之考量 59 4.6.1  摺疊式運算放大器 60 4.6.2  全差動互補自偏置運算放大器 63 4.7  電路的非理想效應 65 4.7.1  熱雜訊 65 4.7.2  時脈抖動的考量 67 4.7.3  運算放大器有限電壓增益的考量 69 4.8  電路設計與實現 70 4.8.1電路模擬結果 72 4.9  電路佈局實現與模擬結果 73 4.10  晶片測量之考量 80 4.10.1  量測環境考量 81 4.10.2  輸入訊號與輸入終端電路 83 4.10.3  供應電壓電路 84 4.10.4  參考電壓腳位端的濾波槽電路 85 4.11  晶片量測結果 85 第五章  總結 89 5.1  總結 89 5.2  未來展望 90 參 考 文 獻 91 自  傳 95 學 術 成 就 95

    [1] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, Wiley, IEEE Press, 2008.
    [2] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
    [3] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1996.
    [4] R. Schreier and G. C. Temes, Understanding Delta–Sigma Data Converters: New York: Wiley, 2004.
    [5] Z. Chen, M. Miyahara, and A. Matsuzawa, “A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain,” in Proc. IEEE Asian Solid-State Circuits Conf. , 2016, pp. 309–312.
    [6] S. Li, B. Qiao, M. Gandara, and N. Sun, “A 13-ENOB 2nd-order noise-shaping SAR ADC realizing optimized NTF zeros using an error-feedback structure,” in Proc. IEEE Int. Solid-State Circuits Conf. , San Francisco, CA, USA, 2018, pp. 234–236.
    [7] X. Tang et al., “A 13.5-ENOB 107-µW noise-shaping SAR ADC with PVT-robust closed-loop dynamic amplifier,” IEEE J. Solid-State Circuits, vol. 55, no. 12, pp. 3248-3259, Dec. 2020.
    [8] W. Guo and N. Sun., “A 12b-ENOB 61µW noise-shaping SAR ADC with a passive integrator,” in Proc. 42nd ESSCIRC Conf. 2016, pp. 405-408.
    [9] N. Maghari, S. Kwon, and U. K. Moon, “74 dB SNDR multi-loop sturdy-MASH delta-sigma modulator using 35 db open-loop op-amp gain,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2212–2221, Aug. 2009.
    [10] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A Higher-Order Topology for Interpolative Modulators for Oversampling A/D Converters,” IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 309-318, Mar. 1990.
    [11] W. L. Lee and C. G. Sodini, “A Topology for Higher-Order Interpolative Coders,” in Proc. IEEE Intel. Symp. Circuits Syst., 1987, pp.459-462.
    [12] B. DelSignore, D. Kerth, N. Sooch, anf E. Swansooon, “ A Monolithic 20-B Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1311-1317, Dec. 1990.
    [13] P. Ferguson, A. Ganesan, R. Adarns, S. Vincelette, R. Libert, A. Volpe, D. Andreas, A.Charpentier, and J. Dattorro, “An 18b 20KHz Dual ΣΔ A/D Converter,” in Proc. ISSCC., Feb. 1991, pp. 68-292.
    [14] J. McCreary and P. R. Gray, “A high-speed, all-MOS successive-approximation weighted capacitor A/D conversion technique,” IEEE Int. Solid-State Circuits Conf., Feb. 1975, pp. 38–39.
    [15] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel,” A Low-Voltage MOSFET-Only ΣΔ Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel Compensation,” in Proc. IEEE Intel. Symp. Circuits Syst., May 2001, pp. 376-379.
    [16] P. Favrat, P. Deval, and M. J. Declercq, “An improved voltage doubler in a standard CMOS technology,” in Proc. IEEE Intel. Symp. Circuits Syst., Hong Kong, June 1997, pp. 249-252
    [17] P. Favrat, P. Deval, and M. J. Declercq, “A high-efficiency CMOS voltage doubler,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 410-416, Mar. 1998. Z. Chen, M. Miyahara and A. Matsuzawa, "A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC," in Proc. IEEE Symp. VLSI Circuits, 2015, pp. C64-C65.
    [18] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched op amp circuits,” Electron. Lett., vol. 35, no. 1, pp. 8-10, Jan. 1999.
    [19] L. Yao, M. S. J. Steyaert, and W. Sansen, “A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol.39, no.11, pp.1809-1818, Nov. 2004
    [20] R. S. Assaad and J. Silva-Martinez, “The recycling folded cascode: A general enhancement of the folded cascode amplifier,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2535–2542, 2009.
    [21] O. Choksi and L. R. Carley, “Analysis of switched-capacitor commonmode feedback circuit,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50, no. 12, pp. 906–917, Dec. 2003
    [22] V. Milovanovic and H. Zimmermann, "On fully differential and complementary single-stage self-biased CMOS differential amplifiers", Proc. Eurocon, pp. 1955-1963, 2013.
    [23] M. Honarparvar, J. M. de la Rosa and M. Sawan, "A 0.9-V 100- μ W Feedforward Adder-Less Inverter-Based MASH ΔΣ Modulator With 91-dB Dynamic Range and 20-kHz Bandwidth," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, pp. 3675-3687, Nov. 2018.
    [24] N. Maghari, S. Kwon and U. Moon, “74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35 dB Open-Loop Opamp Gain,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2212-2221, Aug. 2009.
    [25] A. Gharbiya, and D. A. Johns, “On the implementation of input feedforward delta-sigma modulators,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 6, pp. 453-457, June 2006.
    [26] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc. New York, NY, USA, 2001.
    [27] P. M. Figueiredo and J. C. Vital, "Low kickback noise techniques for CMOS latched comparators," 2004 IEEE International Symposium on Circuits and Systems (ISCAS), Vancouver, BC, Canada, 2004, pp. I-537
    [28] J.-E.Park, Y.-H. Hwang and D. -K. Jeong, "A 0.4-to-1 V Voltage Scalable Delta Sigma ADC With Two-Step Hybrid Integrator for IoT Sensor Applications in 65-nm LP CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 12, pp. 1417-1421, Dec. 2017.
    [29] M. Honarparvar, J. M. de la Rosa, and M. Sawan, “A 0.9V 100 μW feedforward adder-less inverter-based mash modulator with 91 dB dynamic range and 20 kHz bandwidth,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, pp. 3675–3687, 2018
    [30] L. Lv, X. Zhou, Z. Qiao and Q. Li, "Inverter-Based Subthreshold Amplifier Techniques and Their Application in 0.3-V Delta Sigma Modulators," in IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1436-1445, May 2019.
    [31] R. S. A. Kumar, N. Krishnapura, and P. Banerjee, “Analysis and design of a discrete-time delta-sigma modulator using a cascoded floating-inverter-based dynamic amplifier” IEEE J. Solid-State Circuits, vol. 57, no. 11, pp. 3384-3395, Nov. 2022.
    [32] H. Zhang et al., "A 1.25-MHz-BW, 83-dB SNDR Pipelined Noise-Shaping SAR ADC With MASH 2-2 Structure and kT/C Noise Cancellation," in IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 70, no.10, pp. 3872-3876, Oct. 2023
    [33] Z. Yu et al., "A Time-Domain Reconfigurable Second-Order Noise Shaping ADC With Single Fan-Out Gated Delay Cells," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 6, pp. 902-905, June 2023.

    下載圖示
    QR CODE