研究生: |
曹崴智 Tsao, Wei-Chih |
---|---|
論文名稱: |
隨機森林與機器學習方法預測能力比較-以混凝土抗壓能力為例 Random Forest vs. Machine Learning Methods: A Comparative Study on Predictive Capability - A Case Study on Compressive Strength of Concrete |
指導教授: |
程毅豪
Chen, Yi-Hau 呂翠珊 Lu, Tsui-Shan |
口試委員: |
程毅豪
Chen, Yi-Hau 呂翠珊 Lu, Tsui-Shan 吳裕振 Wu, Yuh-Jenn |
口試日期: | 2024/06/25 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 28 |
中文關鍵詞: | 隨機森林 、機器學習 、預測 、混凝土 |
英文關鍵詞: | Random Forest, Machine Learning, Predict, Concrete |
研究方法: | 次級資料分析 、 主題分析 |
DOI URL: | http://doi.org/10.6345/NTNU202400893 |
論文種類: | 學術論文 |
相關次數: | 點閱:270 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討隨機森林與其他機器學習方法在預測混凝土抗壓能力方面的相對效能。混凝土抗壓能力是評估混凝土品質和結構強度的重要指標。研究以隨機森林為主要預測模型,並與其他機器學習方法進行對比,包括梯度提升技術、決策樹等。
在研究中,我們首先收集了具有多樣性混凝土特性的數據集,包括不同成分、製程和時間點的數據。接著,我們利用這些數據進行模型訓練和測試,評估各模型在預測混凝土抗壓能力方面的性能。隨機森林模型以其擬合能力和抗過擬合特性而聞名,我們將進一步分析其與其他方法的比較優勢。
研究結果將有助於深入了解隨機森林在混凝土抗壓能力預測中的表現,並提供選擇最適合的模型以改進混凝土品質預測的參考。這項研究對於擴展機器學習在建築材料領域的應用具有重要意義。
This study aims to explore the relative performance of Random Forest and other machine learning methods in predicting the compressive strength of concrete. Compressive strength is a crucial indicator for assessing concrete quality and structural integrity. The study focuses on Random Forest as the primary predictive model and compares it with other machine learning methods, including Support Vector Machines, Decision Trees, and others.
In this research, a diverse dataset with varied concrete properties, including different compositions, processes, and time points, was collected. Subsequently, the data were utilized for model training and testing to evaluate the performance of each model in predicting concrete compressive strength. Known for its fitting ability and resistance to overfitting, the Random Forest model will be further analyzed for its comparative advantages over other methods.
The findings of this research will contribute to a deeper understanding of the performance of Random Forest in predicting concrete compressive strength and provide insights into choosing the most suitable model to enhance predictions of concrete quality. This study holds significance in extending the application of machine learning in the field of construction materials.
蘇聖傑。應用隨機森林演算法於冰水主機性能趨勢預測,碩士論文。國立臺北科技大學,臺北市。
Aytan-Aktug, D., Clausen, P. T. L. C., Bortolaia, V., Aarestrup, F. M., & Lund, O. (2020).“Prediction of acquired antimicrobial resistance for multiple bacterial species using neural networks.” mSystems, 5, e00774-19.
Hariharan, R. (2021). “Random forest regression analysis on combined role of meteorological indicators in disease dissemination in an Indian city: A case study of New Delhi.” Elsevier,Urban Climate,100781.
Hanko, M., Grendár, M., Snopko, P., Opšenák, R., Sutovský, J., Benčo, M., Šoršák, J., Zelenák, K., & Kolarovszki, B. (2021).” Random Forest-Based Prediction of Outcome and Mortality in Patients with Traumatic Brain Injury Undergoing Primary Decompressive Craniectomy.” Elsevier, World Neurosurgery,e450-e458
Leo Breiman (2001). “random forests”. machine learning. 45(1) 5-32
Pirneskoski, J., Tamminen, J., Kallonen, A., Nurmi, J., Kuisma, M., Olkkola, K. T., & Hoppu, S. (2020). “Randomforest machine learning method outperforms prehospital National Early Warning Score for predicting one-day mortality: A retrospective study.” Elsevier,Resuscitation Plus,100046.
Speiser, J. L., Zikic, D., & Koff, D. (2020). “A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling.” Expert Systems with Applications. 134: 93–101
Simón, D., Borsani, O., & Filippi, C. V. (2022). “RFPDR: a random forest approach for plant disease resistance protein prediction.” PeerJ, 10:e11683
Tin Kam Ho.(1995). “Random decision forests” .IEEE, 278-282