簡易檢索 / 詳目顯示

研究生: 曹崴智
Tsao, Wei-Chih
論文名稱: 隨機森林與機器學習方法預測能力比較-以混凝土抗壓能力為例
Random Forest vs. Machine Learning Methods: A Comparative Study on Predictive Capability - A Case Study on Compressive Strength of Concrete
指導教授: 程毅豪
Chen, Yi-Hau
呂翠珊
Lu, Tsui-Shan
口試委員: 程毅豪
Chen, Yi-Hau
呂翠珊
Lu, Tsui-Shan
吳裕振
Wu, Yuh-Jenn
口試日期: 2024/06/25
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 28
中文關鍵詞: 隨機森林機器學習預測混凝土
英文關鍵詞: Random Forest, Machine Learning, Predict, Concrete
研究方法: 次級資料分析主題分析
DOI URL: http://doi.org/10.6345/NTNU202400893
論文種類: 學術論文
相關次數: 點閱:270下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討隨機森林與其他機器學習方法在預測混凝土抗壓能力方面的相對效能。混凝土抗壓能力是評估混凝土品質和結構強度的重要指標。研究以隨機森林為主要預測模型,並與其他機器學習方法進行對比,包括梯度提升技術、決策樹等。
    在研究中,我們首先收集了具有多樣性混凝土特性的數據集,包括不同成分、製程和時間點的數據。接著,我們利用這些數據進行模型訓練和測試,評估各模型在預測混凝土抗壓能力方面的性能。隨機森林模型以其擬合能力和抗過擬合特性而聞名,我們將進一步分析其與其他方法的比較優勢。
    研究結果將有助於深入了解隨機森林在混凝土抗壓能力預測中的表現,並提供選擇最適合的模型以改進混凝土品質預測的參考。這項研究對於擴展機器學習在建築材料領域的應用具有重要意義。

    This study aims to explore the relative performance of Random Forest and other machine learning methods in predicting the compressive strength of concrete. Compressive strength is a crucial indicator for assessing concrete quality and structural integrity. The study focuses on Random Forest as the primary predictive model and compares it with other machine learning methods, including Support Vector Machines, Decision Trees, and others.
    In this research, a diverse dataset with varied concrete properties, including different compositions, processes, and time points, was collected. Subsequently, the data were utilized for model training and testing to evaluate the performance of each model in predicting concrete compressive strength. Known for its fitting ability and resistance to overfitting, the Random Forest model will be further analyzed for its comparative advantages over other methods.
    The findings of this research will contribute to a deeper understanding of the performance of Random Forest in predicting concrete compressive strength and provide insights into choosing the most suitable model to enhance predictions of concrete quality. This study holds significance in extending the application of machine learning in the field of construction materials.

    致謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1研究動機與目的 1 1.2研究架構 1 第二章 文獻探討 2 第三章 研究方法 3 3.1 機器學習Machine Learning 3 3.2 決策樹Decision tree 4 3.3 Bagging 5 3.4 隨機森林演算法RandomForest 6 3.5 梯度提升技術GBM 8 3.6 極限梯度提升機XGB 10 3.7 判別標準 11 第四章 資料分析 12 4.1 資料介紹 12 4.2 資料預處理 13 4.3 變數重要性 14 4.4 變數挑選 16 4.5 建立隨機森林模型 17 4.6 線性迴歸模型 20 4.7 GBM模型和XGBOOST 模型 21 第五章 結論與未來展望 26 參考文獻 28

    蘇聖傑。應用隨機森林演算法於冰水主機性能趨勢預測,碩士論文。國立臺北科技大學,臺北市。
    Aytan-Aktug, D., Clausen, P. T. L. C., Bortolaia, V., Aarestrup, F. M., & Lund, O. (2020).“Prediction of acquired antimicrobial resistance for multiple bacterial species using neural networks.” mSystems, 5, e00774-19.
    Hariharan, R. (2021). “Random forest regression analysis on combined role of meteorological indicators in disease dissemination in an Indian city: A case study of New Delhi.” Elsevier,Urban Climate,100781.
    Hanko, M., Grendár, M., Snopko, P., Opšenák, R., Sutovský, J., Benčo, M., Šoršák, J., Zelenák, K., & Kolarovszki, B. (2021).” Random Forest-Based Prediction of Outcome and Mortality in Patients with Traumatic Brain Injury Undergoing Primary Decompressive Craniectomy.” Elsevier, World Neurosurgery,e450-e458
    Leo Breiman (2001). “random forests”. machine learning. 45(1) 5-32
    Pirneskoski, J., Tamminen, J., Kallonen, A., Nurmi, J., Kuisma, M., Olkkola, K. T., & Hoppu, S. (2020). “Randomforest machine learning method outperforms prehospital National Early Warning Score for predicting one-day mortality: A retrospective study.” Elsevier,Resuscitation Plus,100046.
    Speiser, J. L., Zikic, D., & Koff, D. (2020). “A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling.” Expert Systems with Applications. 134: 93–101
    Simón, D., Borsani, O., & Filippi, C. V. (2022). “RFPDR: a random forest approach for plant disease resistance protein prediction.” PeerJ, 10:e11683
    Tin Kam Ho.(1995). “Random decision forests” .IEEE, 278-282

    下載圖示
    QR CODE