簡易檢索 / 詳目顯示

研究生: 鍾明廷
Zhong, Ming-Ting
論文名稱: The Galois Group of Iterated Polynomial of X^{p^r}-c over Non-archimedean Valued Field
The Galois Group of Iterated Polynomial of X^{p^r}-c over Non-archimedean Valued Field
指導教授: 夏良忠
Hsia, Liang-Chung
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 34
英文關鍵詞: infinitely wildly ramified
DOI URL: http://doi.org/10.6345/NTNU202000914
論文種類: 學術論文
相關次數: 點閱:214下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Let K be a finite extension over Q_p the fraction field of p-adic integers. Let f(X) =X^{p^r} - c ∈ K[X] where r ∈ Z≥2, and let f_n(X) be the nth iterated polynomial of
    f(X). For any a ∈ K, we examine the Galois groups and the ramified index of K_n over K where K_n is the splitting field of f_n(X) − a over K. For some v(c), the behavior
    depends on v(c). But for
    -p/(p-1) - (r-1)p^r/(p^r-1) ≤ v(c) < -p/(p-1),
    we haven’t found results.

    Abstract i 1 Introduction 1 2 Preliminaries on local field 2 3 v(c) ≥ 0 22 4 -p/(p-1) < v(c) < 0 26 5 v(c) = −p/(p-1) 29 6 v(c) < -p/(p-1) - (r-1)p^r/(p^r-1) 30 References 34

    [AHPW18] J. Anderson, S. Hamblen, B. Poonen, and L. Walton. Local arboreal representations. Int. Math. Res. Not., 2018(19):5974–5994, 2018. doi:10.1093/imrn/rnx054.
    [Ash10] R. B. Ash. A Course in Algebraic Number Theory. Dover books on mathematics. Courier Corporation, 2010.
    [Gou97] F. Q. Gouvêa. p-adic Numbers. Universitext. Springer-Verlag, Berlin, second edition, 1997. doi:10.1007/978-3-642-59058-0.
    [Ked10] K. S. Kedlaya. p-adic Differential Equations, volume 125 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. doi:10.1017/
    CBO9780511750922,.
    [Lub13] J. Lubin. Elementary analytic methods in higher ramification theory. Journal of Number Theory, 133(3):983–999, 2013. doi:10.1016/j.jnt.2012.02.017.
    [Odo88] R. W. K. Odoni. Realising wreath products of cyclic groups as Galois groups. Mathematika, 35(1):101–113, 1988. doi:10.1112/S002557930000632X.
    [Sto92] M. Stoll. Galois groups over Q of some iterated polynomials. Arch. Math, 59:239–244, 1992. doi:10.1007/BF01197321.

    下載圖示
    QR CODE