簡易檢索 / 詳目顯示

研究生: 林于庭
Lin, Yu-Ting
論文名稱: 富含三萜類之山苦瓜葉萃取物對於四氯化碳誘導小鼠肝臟纖維化之保護效應
Protective role of the triterpenoid-enriched extract of wild bitter melon leaf against carbon tetrachloride-induced liver fibrosis in mice
指導教授: 蔡帛蓉
Tsai, Po-Jung
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 108
中文關鍵詞: 肝纖維化四氯化碳山苦瓜三萜類化合物抗發炎
英文關鍵詞: liver fibrosis
DOI URL: http://doi.org/10.6345/THE.NTNU.DHDFS.028.2018.A06
論文種類: 學術論文
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝臟纖維化是由於慢性肝損傷造成大量的基質蛋白堆積在肝臟組織,為肝臟疾病最後一個可逆的階段,肝纖維化可能導致肝硬化或肝癌。山苦瓜具有多種藥理活性,其活性成分有酚類、黃酮類和三萜類等化合物。但山苦瓜三萜類化合物對於緩解肝纖維化的功效未明,因此本研究探討富含三萜類化合物之山苦瓜葉萃取物對於四氯化碳 (CCl4) 誘導肝纖維化的保護能力。
    取得台灣山苦瓜 (花蓮一號) 並製備山苦瓜葉乙醇萃物 (bitter melon leaf extract, BMLE) 和富含三萜類之區分物 (triterpenoid-enriched extract, TEE),以 LC/MS 鑑定 TEE 含有 Kuguacin R、Charantadiol A 以及3β, 7β, 25-trihydroxycucurbita-5, 23-dien-19-al (TCD) 葫蘆烷型三萜類化合物。給予 ICR 小鼠40% CCl4 (1 mL/kg) 和分別餵食 BMLE (100 mg/kg) 或 TEE (100 mg/kg) 八周,由肝臟組織切片結果發現 BMLE 與 TEE 均可減少肝臟細胞壞死、肝細胞氣球樣變性、發炎細胞聚集和膠原纖維蛋白沉積等現象。為進一步探討 TEE 的保護效應,給予 ICR 小鼠40% CCl4 (1 mL/kg) 和分別餵食 TEE (25、50、100、150 mg/kg) 與 silymarin (200 mg/kg) 作為對照組,為期九周,並於注射 CCl4 前一周預先給予 TEE 和 silymarin。
    實驗結果顯示餵食 TEE (25、50、100、150 mg/kg) 均顯著降低 CCl4 誘導血清 AST、ALT 和肝脂堆積。肝臟組織染色結果觀察餵食 TEE (100、150 mg/kg) 組的肝臟門脈周邊橋連壞死 (periportal +/- bridging necrosis)、門脈發炎和纖維化的評分值顯著低於 CCl4 組,TEE (150 mg/kg) 組的肝小葉內變性和局部壞死的評分值顯著低於 CCl4 組,且隨著 TEE 劑量增加而抑制 α-SMA 的表現。整體 TEE (100、150 mg/kg) 組的組織學活性指數總評分顯著低於 CCl4組。從西方墨點法的結果觀察餵食 TEE (150 mg/kg) 顯著抑制肝臟纖維化蛋白質的 TGF-β1 和 α-SMA 表現。定量聚合酶連鎖反應的結果觀察餵食 TEE (25、50、100、150 mg/kg) 顯著抑制肝臟發炎的 TLR4 基因表現,TEE (25、50、150 mg/kg) 顯著抑制肝臟纖維化的 TIMP-1 基因表現。此外隨著 TEE 劑量增加而有逐漸減少發炎型 Ly6Chi 單核球聚集的趨勢,具抗發炎潛力。
    綜合言之,TEE 具有緩解 CCl4 誘導小鼠肝纖維化之功效、減少肝臟發炎壞死,且隨著 TEE 劑量增加而有提升保護效應的趨勢,顯示富含三萜類化合物之山苦瓜葉萃取物具有抑制肝纖維化的潛力,是值得繼續研究開發的護肝素材。

    Liver fibrosis results from chronic damage to the liver with excessive extracellular matrix deposition and fibrous scar formation. Liver fibrosis has been shown to be reversible after the removal of causative agents and often progresses to cirrhosis, liver failure, and hepatocellular carcinoma. Wild bitter melon (WBM, Momordica charantia Linn. var. abbreviata Ser.) possesses various biological functions. WBM is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, and saponins. However, the protective effect of WBM and its components on liver fibrosis is still unknown. In this study, we investigated the protective effects of WBM leaf extract (BMLE) and its triterpenoid-enriched extract (TEE) on carbon tetrachloride (CCl4)-induced liver fibrosis in mice.
    In experiment 1, BMLE (100 mg/kg) and TEE (100 mg/kg) were administered to 6-week-old male ICR mice by oral gavage daily during I.P. injection of 40% CCl4 (1 mL/kg) twice per week for eight weeks. The results showed that the administration of BMLE or TEE alleviated hepatocyte damage, necrosis, ballooned degeneration, inflammatory foci and collagen deposition. In experiment 2, TEE (25, 50, 100, 150 mg/kg) and silymarin (200 mg/kg) were given to 6-week-old male ICR mice by oral gavage daily for ten weeks starting one week before the start of I.P. injection of 40% CCl4 (1 mL/kg) twice per week. The results revealed that TEE (25, 50, 100, 150 mg/kg) significantly reduced serum aspartate transaminase (AST), alanine transaminase (ALT) and hepatic triglyceride deposite. According to tissue staining, TEE (100, 150 mg/kg) significantly reduced periportal+/- bridging necrosis, portal inflammation and fibrosis. TEE (150 mg/kg) also significantly reduced intralobular degeneration and focal necrosis. Overall, TEE (100, 150 mg/kg) groups had lower histological activity index than other groups. Western blot analysis indicated that TEE (150 mg/kg) significantly decreased the expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA). Besides, qPCR analysis indicated that TEE (25, 50, 100, 150 mg/kg) significantly decreased the toll like receptor 4 (TLR4) mRNA. TEE (25, 50, 150 mg/kg) also significantly decreased the tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA. According to flow cytometry, the number of intrahepatic inflammatory Ly6Chi monocyte slightly decreased with the concentration of TEE increased.
    Our findings suggested that BMLE and TEE exhibit hepatoprotective effects on CCl4-induced liver fibrosis in mice, and might be promising anti-fibrotic options for preventing chronic liver diseases.

    第一章、 文獻探討 1 第一節、 肝纖維化 1 壹、 肝功能簡介 1 貳、 肝纖維化對於慢性肝病的關聯 2 第二節、 參與肝纖維化的細胞組成與功能 3 壹、 肝細胞 4 貳、 庫佛氏細胞 4 參、 星狀細胞 5 肆、 單核球 6 第三節、 肝纖維化的形成與修復 7 壹、 肝纖維化初始期 (Initiation) 7 貳、 肝纖維化持續期 (Perpetuation) 7 參、 肝纖維化修復期 (Resolution) 8 第四節、 肝纖維化之相關基因與蛋白質表現 11 壹、 TGF-β 訊息傳遞路徑與肝纖維化形成 11 貳、 肝臟基因和蛋白質表現與纖維化之相關性 12 一、 TLR2 與 TLR4 12 二、 Galectin-3 13 三、 α-SMA 13 四、 TIMP-1 14 五、 Bax 與 Bcl-2 14 第五節、 肝纖維化之病理診斷 15 第六節、 四氯化碳誘導肝纖維化模式 17 第七節、 苦瓜的生理活性 19 壹、 苦瓜簡介 19 貳、 苦瓜萃取物的生物活性 19 一、 抗代謝性疾病 19 二、 抗氧化和抗發炎活性 20 三、 其他功效 20 參、 苦瓜應用於肝臟疾病相關研究 21 第二章、 研究動機與目的 24 第三章、 材料與方法 25 第一節、 山苦瓜葉萃取與純化 25 壹、 粗萃物與區分物製備 25 貳、 總多酚含量測定 25 參、 三萜類含量測定 25 肆、 液相層析質譜儀分析 27 伍、 研究材料 28 一、 藥品與試劑 28 二、 儀器設備與耗材 28 第二節、 動物實驗 29 壹、 實驗一 29 一、 實驗動物飼養 29 二、 動物犧牲與樣品收集 29 三、 分析項目與方法 30 (一)、 血液生化分析 30 (二)、 組織包埋與切片 30 (三)、 H&E 染色 31 (四)、 Masson’s trichrome 染色 31 四、 研究材料 32 (一)、 藥品與試劑 32 (二)、 儀器設備及耗材 32 貳、 實驗二 33 一、 實驗動物飼養 33 二、 動物犧牲與樣品收集 33 三、 分析項目與方法 34 (一)、 血清 AST 分析 34 (二)、 血清 ALT 分析 35 (三)、 血清 T-BIL 分析 35 (四)、 血清 ALP 分析 35 (五)、 血清 TG 分析 36 (六)、 肝臟脂肪分析 36 (七)、 組織包埋與切片、H&E 染色與Masson’s trichrome 染色 37 (八)、 Immunohistochemistry (IHC) 染色 37 (九)、 西方墨點法 (Western blotting) 38 (十)、 定量聚合酶連鎖反應 (Quantative-polymerase chain reaction, qPCR) 42 (十一)、 肝臟單核球分析 44 四、 研究材料 45 (一)、 藥品與試劑 45 (二)、 儀器設備及耗材 47 第三節、 統計分析 48 第四章、 實驗結果 49 第一節、 TEE 之三萜類化合物定性分析 49 第二節、 動物實驗結果 51 壹、 實驗一 51 一、 體重變化 51 二、 體重與臟器重量 52 三、 血液生化分析 53 四、 肝臟組織染色分析 55 貳、 實驗二 58 一、 體重變化 58 二、 體重與臟器重量 59 三、 血液生化分析 61 四、 肝臟外觀與血液和肝臟脂肪分析 62 五、 肝臟組織染色分析 64 六、 肝臟蛋白質表現與纖維化之相關性 69 七、 肝臟基因表現與纖維化之相關性 77 八、 肝臟單核球分析 79 第五章、 討論與結論 80 第一節、 討論 80 壹、 山苦瓜葉萃取物活性成分 80 貳、 實驗一 80 一、 BMLE 與 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之體重變化與臟器重量的影響 80 二、 BMLE 與 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之血液生化數值的影響 81 三、 BMLE 與 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之肝損傷情形與基質蛋白沉積之影響 83 參、 實驗二 84 一、 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之體重變化與臟器重量的影響 84 二、 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之血液生化數值的影響 85 三、 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之肝臟外觀與血液和肝臟脂肪的影響 85 四、 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之肝損傷情形與基質蛋白沉積之影響 86 五、 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之肝臟蛋白質表現量的影響 87 六、 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之肝臟基因表現量的影響 89 七、 TEE 對於四氯化碳誘導 ICR 小鼠肝纖維化之肝臟單核球的影響 90 第二節、 結論 91 第六章、 參考文獻 93

    全中和。(2001)。珍貴種源山苦瓜。花蓮區農業專訊,(36),5-6。
    全中和。(2008)。山苦瓜種源蒐集與利用。農業生技產業應用研討會專輯,21-28。
    李雯、陈燕芬、吴楠、池墨瑶、费佳。(2012)。苦瓜叶的化学成分研究。中草药,43(9),1712-1715。
    洪雅菱。(2014)。生物活性導向分離鑑定山苦瓜葉抑制牙齦卟啉單胞菌誘導發炎反應的活性物質。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。
    陳鈺緯、張經緯、章振旺、楊蕙心、王蒼恩、吳志仁、陳漢湘。(2012)。肝硬化患者的腎臟功能異常。內科學誌,42-54。
    許晉輝。(2012)。如何看肝功能的檢查報告。財團法人台灣癌症臨床研究發展基金會癌症新探期刊,(59),12-16。
    黃文程。(2015)。生物活性導向分離鑑定山苦瓜緩解痤瘡丙酸桿菌誘導發炎反應之活性成分。國立臺灣師範大學人類發展與家庭學系營養科學與教育組博士論文。
    趙涓含。(2016)。苦瓜三萜類化合物 TCD 對人類胃癌 AGS 細胞的抗腫瘤效應及增加化學治療的敏感性。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。
    衛生福利部國民健康署。(2017)。中華民國106年死因統計結果分析,2-6。
    衛生福利部食品藥物管理署。(2016)。健康食品之護肝保健功效評估方法,3-13。
    Adewole, S., Salako, A., Doherty, O., & Naicker, T. (2007). Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2), 153-164.
    Ahmed, I., Lakhani, M. S., Gillett, M., John, A., & Raza, H. (2001). Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Research and Clinical Practice, 51(3), 155-161.
    Al-Rasheed, N. M., Attia, H. A., Mohamad, R. A., Al-Rasheed, N. M., Al Fayez, M., & Al-Amin, M. A. (2017). Date fruits inhibit hepatocyte apoptosis and modulate the expression of hepatocyte growth factor, cytochrome P450 2E1 and heme oxygenase-1 in carbon tetrachloride-induced liver fibrosis. Archives of Physiology and Biochemistry, 123(2), 78-92.
    Bacigalupo, M. L., Manzi, M., Rabinovich, G. A., & Troncoso, M. F. (2013). Hierarchical and selective roles of galectins in hepatocarcinogenesis, liver fibrosis and inflammation of hepatocellular carcinoma. World Journal of Gastroenterology, 19(47), 8831-8849.
    Bai, L. Y., Chiu, C. F., Chu, P. C., Lin, W. Y., Chiu, S. J., & Weng, J. R. (2016). A triterpenoid from wild bitter gourd inhibits breast cancer cells. Scientific Reports,
    6, 22419-22429.
    Baligar, N. S., Aladakatti, R. H., Ahmed, M., & Hiremath, M. B. (2014). Hepatoprotective activity of the neem-based constituent azadirachtin-A in carbon tetrachloride intoxicated Wistar rats. Canadian Journal of Physiology and Pharmacology, 92(4), 267-277.
    Basaranoglu, M., Basaranoglu, G., & Sentürk, H. (2013). From fatty liver to fibrosis: a tale of “second hit”. World Journal of Gastroenterology, 19(8), 1158-1165.
    Basch, E., Gabardi, S., & Ulbricht, C. (2003). Bitter melon (Momordica charantia): a review of efficacy and safety. American Journal of Health-System Pharmacy, 60(4), 356-359.
    Bataller, R., & Gao, B. (2015). Liver fibrosis in alcoholic liver disease. Seminars in Liver Disease, 35(2), 146-156.
    Beaton, M. D. (2012). Current treatment options for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Canadian Journal of Gastroenterology and Hepatology, 26(6), 353-357.
    Benyon, R. C., & Arthur, M. J. (2001). Extracellular matrix degradation and the role of hepatic stellate cells. Seminars in Liver Disease, 21(3), 373-384.
    Berzsenyi, M. D., Roberts, S. K., Preiss, S., Woollard, D. J., Beard, M. R., Skinner, N. A., Bowden, D. S., & Visvanathan, K. (2011). Hepatic TLR2 and TLR4 expression correlates with hepatic inflammation and TNF‐α in HCV and HCV/HIV infection. Journal of Viral Hepatitis, 18(12), 852-860.
    Brai, B. I., Adisa, R. A., & Odetola, A. A. (2014). Hepatoprotective properties of aqueous leaf extract of Persea Americana, Mill (Lauraceae) ‘Avocado’against CCl4-induced damage in rats. African Journal of Traditional, Complementary and Alternative Medicines, 11(2), 237-244.
    Brempelis, K. J., & Crispe, I. N. (2016). Infiltrating monocytes in liver injury and repair. Clinical and Translational Immunology, 5(11), 113-122.
    Brunt, E. M., Kleiner, D. E., Wilson, L. A., Belt, P., & Neuschwander‐Tetri, B. A. (2011). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology, 53(3), 810-820.
    Chao, C. Y., Yin, M. C., & Huang, C. J. (2011). Wild bitter gourd extract up-regulates mRNA expression of PPARα, PPARγ and their target genes in C57BL/6J mice. Journal of Ethnopharmacology, 135(1), 156-161.
    Chaware, V. J., Joshi, Y. R., & Biyani, K. R. (2009). Hepatoprotective activity of hydroalcoholic extract of Momordica charantia Linn. leaves against carbon tetrachloride induced hepatopathy in rats. International Journal of ChemTech Research journal, 1(2), 355-358.
    Chen, L. C., Hu, L. H., & Yin, M. C. (2016). Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury. BioMedicine, 6(2), 12-19.
    Chen, Q., Zhang, H., Cao, Y., Li, Y., Sun, S., Zhang, J., & Zhang, G. (2017). Schisandrin B attenuates CCl4-induced liver fibrosis in rats by regulation of Nrf2-ARE and TGF-β/Smad signaling pathways. Drug Design, Development and Therapy, 11, 2179-2191.
    Cheng, H. L., Kuo, C. Y., Liao, Y. W., & Lin, C. C. (2012). EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNFα-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner. European Journal of Pharmacology, 689(1), 241-248.
    Chung, Y. H., Huang, Y. H., Chu, T. H., Chen, C. L., Lin, P. R., Huang, S. C., Wu, D. C., Huang, C. C., Hu, T. H., Kao, Y. H., & Tai, M. H. (2018). BMP-2 restoration aids in recovery from liver fibrosis by attenuating TGF-β1 signaling. Laboratory Investigation, 1-15.
    Clichici, S., Olteanu, D., Nagy, A. L., Oros, A., Filip, A., & Mircea, P. A. (2015). Silymarin inhibits the progression of fibrosis in the early stages of liver injury in CCl4-treated rats. Journal of Medicinal Food, 18(3), 290-298.
    Cui, W. X., Yang, J., Chen, X. Q., Mao, Q., Wei, X. L., Wen, X. D., & Wang, Q. (2013). Triterpenoid-rich fraction from Ilex hainanensis Merr. attenuates non-alcoholic fatty liver disease induced by high fat diet in rats. The American Journal of Chinese Medicine, 41(3), 487-502.
    Das, P., Ahuja, A., & Gupta, S. D. (2012). Overview of the histopathology of chronic hepatitis B infection. Hepatitis B Annual, 9(1), 49-85.
    Deng, Y., Tang, Q., Zhang, Y., Zhang, R., Wei, Z., Tang, X., & Zhang, M. (2017). Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism. Food and Nutrition research, 61(1), 1348864-1348875.
    Dixon, L. J., Barnes, M., Tang, H., Pritchard, M. T., & Nagy, L. E. (2013). Kupffer cells in the liver. Comprehensive Physiology, 3(2), 785-797.
    Dragomir, A. C., Sun, R., Mishin, V., Hall, L. B., Laskin, J. D., & Laskin, D. L. (2012). Role of galectin-3 in acetaminophen-induced hepatotoxicity and inflammatory mediator production. Toxicological Sciences, 127(2), 609-619.
    Duarte, S., Baber, J., Fujii, T., & Coito, A. J. (2015). Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biology, 44, 147-156.
    Duggina, P., Kalla, C. M., Varikasuvu, S. R., Bukke, S., & Tartte, V. (2015). Protective effect of centella triterpene saponins against cyclophosphamide-induced immune and hepatic system dysfunction in rats: its possible mechanisms of action. Journal of Physiology and Biochemistry, 71(3), 435-454.
    Dulai, P. S., Singh, S., Patel, J., Soni, M., Prokop, L. J., Younossi, Z., Sebastiani, G., Ekstedt, M., Hagstrom, H., Nasr, P., Stal, P., Wong, V., Kechagias, S., Hultcrantz, R., & Loomba, R. (2017). Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta‐analysis. Hepatology, 65(5), 1557-1565.
    Dunne, A. (2005). Adaptor usage and Toll‐like receptor signaling specificity. Federation of European Biochemical Societies Letters, 579(15), 3330-3335.
    Elsharkawy, A. M., Oakley, F., & Mann, D. A. (2005). The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis, 10(5), 927-939.
    Fabregat, I., Moreno‐Càceres, J., Sánchez, A., Dooley, S., Dewidar, B., Giannelli, G., & ten Dijke, P. (2016). TGF‐β signalling and liver disease. The Federation of European Biochemical Societies Journal, 283(12), 2219-2232.
    Federico, A., Dallio, M., & Loguercio, C. (2017). Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules, 22(2), 191-206.
    Ferenci, P. (2016). Silymarin in the treatment of liver diseases: what is the clinical evidence? Clinical Liver Disease, 7(1), 8-10.
    Folch, J., Lees, M., & Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497-509.
    Friedman, S. L. (2010). Evolving challenges in hepatic fibrosis. Nature Reviews Gastroenterology and Hepatology, 7(8), 425-436.
    Fujii, T., Fuchs, B. C., Yamada, S., Lauwers, G. Y., Kulu, Y., Goodwin, J. M., Lanuti, M., & Tanabe, K. K. (2010). Mouse model of carbon tetrachloride induced liver fibrosis: histopathological changes and expression of CD133 and epidermal growth factor. BioMed Central Gastroenterology, 10(1), 79-89.
    Fujii, H., & Kawada, N. (2014). Fibrogenesis in alcoholic liver disease. World Journal of Gastroenterology, 20(25), 8048-8054.
    Gressner, A. M., Weiskirchen, R., Breitkopf, K., & Dooley, S. (2002). Roles of TGF-β in hepatic fibrosis. Frontiers Bioscience, 7(1), 793-807.
    Gudowska, M., Gruszewska, E., Cylwik, B., Panasiuk, A., Rogalska, M., Flisiak, R., Szmitkowski1, M., & Chrostek, L. (2015). Galectin-3 concentration in liver diseases. Annals of Clinical and Laboratory Science, 45(6), 669-673.
    Guo, X., & Wang, X. F. (2009). Signaling cross-talk between TGF-β/BMP and other pathways. Cell Research, 19(1), 71-97.
    Guo, Y., Wang, S., Wang, Y., & Zhu, T. (2016). Silymarin improved diet-induced liver damage and insulin resistance by decreasing inflammation in mice. Pharmaceutical Biology, 54(12), 2995-3000.
    Harmon, R. C., Tiniakos, D. G., & Argo, C. K. (2011). Inflammation in nonalcoholic steatohepatitis. Expert Review of Gastroenterology and Hepatology, 5(2), 189-200.
    Hellerbrand, C., Schattenberg, J. M., Peterburs, P., Lechner, A., & Brignoli, R. (2017). The potential of silymarin for the treatment of hepatic disorders. Clinical Phytoscience, 2(1), 7-20.
    Henderson, N. C., Mackinnon, A. C., Farnworth, S. L., Poirier, F., Russo, F. P., Iredale, J. P., Haslett, C., Simpson, K. J., & Sethi, T. (2006). Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 5060-5065.
    Henderson, N. C., & Sheppard, D. (2013). Integrin-mediated regulation of TGFβ in fibrosis. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1832(7), 891-896.
    Hernandez-Gea, V., & Friedman, S. L. (2011). Pathogenesis of liver fibrosis. Annual Review of Pathology: Mechanisms of Disease, 6, 425-456.
    Heymann, F., Trautwein, C., & Tacke, F. (2009). Monocytes and macrophages as cellular targets in liver fibrosis. Inflammation and Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation and Allergy), 8(4), 307-318.
    Hirabaru, M., Mochizuki, K., Takatsuki, M., Soyama, A., Kosaka, T., Kuroki, T., Shimokawa, K., & Eguchi, S. (2014). Expression of alpha smooth muscle actin in living donor liver transplant recipients. World Journal of Gastroenterology, 20(22), 7067-7074.
    Horváth, M. É., Gonzalez-Cabello, R., Blázovics, A., van der Looij, M., Barta, I., Müzes, G., & Fehér, J. (2001). Effect of silibinin and vitamin E on restoration of cellular immune response after partial hepatectomy. Journal of Ethnopharmacology, 77(2-3), 227-232.
    Hou, Y. L., Tsai, Y. H., Lin, Y. H., & Chao, J. C. (2014). Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats. BioMed Central Complementary and Alternative Medicine, 14(1), 415-425.
    Hsiao, C. Y., Chen, Y. M., Hsu, Y. J., Huang, C. C., Sung, H. C., & Chen, S. S. (2017). Supplementation with Hualian No. 4 wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) extract increases anti-fatigue activities and enhances exercise performance in mice. Journal of Veterinary Medical Science, 79(6), 1110-1119.
    Huang, Y. L., Chu, Y. L., Ho, C. T., Chung, J. G., Lai, C. I., Su, Y. C., Kuo, Y. K., & Sheen, L. Y. (2015). Antcin K, an active triterpenoid from the fruiting bodies of
    basswood-cultivated Antrodia cinnamomea, inhibits metastasis via suppression of integrin-mediated adhesion, migration, and invasion in human hepatoma cells. Journal of Agricultural and Food Chemistry, 63(18), 4561-4569.
    Huang, R., Liu, Y., Xiong, Y., Wu, H., Wang, G., Sun, Z., Chen, J., Yan, X., Pan, Z., Xia, J., Zhang, Z., Wang, H., & Zhang, Z. (2016). Curcumin protects against liver fibrosis by attenuating infiltration of Gr1hi monocytes through inhibition of monocyte chemoattractant protein-1. Discovery Medicine, 21(118), 447-457.
    Iyer, S. C., Kannan, A., Gopal, A., Devaraj, N., & Halagowder, D. (2015). Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition. Experimental Cell Research, 336(1), 66-75.
    Ji, L., Xue, R., Tang, W., Wu, W., Hu, T., Liu, X., Peng, X., Gu, J., Chen, S., & Zhang, S. (2014). Toll like receptor 2 knock‐out attenuates carbon tetrachloride‐induced liver fibrosis by downregulating MAPK and NF‐κB signaling pathways. Federation of European Biochemical Societies Letters, 588(12), 2095-2100.
    Ju, C., & Tacke, F. (2016). Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cellular and Molecular Immunology, 13(3), 316-327.
    Juan, B., Ying, Z., & Ying, D. (2017). Bitter melon powder protects against obesity-associated fatty liver disease by improving colonic microenvironment in rats with high-fat diet-induced obesity. Biomedical and Environmental Sciences, 30(8), 611-615.
    Kao, Y. H., Chen, P. H., Wu, T. Y., Lin, Y. C., Tsai, M. S., Lee, P. H., Tai, T. S., Chang, H. R., & Sun, C. K. (2017). Lipopolysaccharides induce Smad2 phosphorylation through PI3K/Akt and MAPK cascades in HSC-T6 hepatic stellate cells. Life Sciences, 184, 37-46.
    Ke, B. J., & Lee, C. L. (2018). Cordyceps cicadae NTTU 868 mycelium prevents CCl4-induced hepatic fibrosis in BALB/c mice via inhibiting the expression of pro-inflammatory and pro-fibrotic cytokines. Journal of Functional Foods, 43, 214-223.
    Khalaf-Allah, A. E. R. M., El-Gengaihi, S. E., Hamed, M. A., Zahran, H. G., & Mohammed, M. A. (2016). Chemical composition of golden berry leaves against hepato-renal fibrosis. Journal of Dietary Supplements, 13(4), 378-392.
    Kim, S. J., Cho, H. I., Kim, S. J., Kim, J. S., Kwak, J. H., Lee, D. U., Lee, S. K., & Lee, S. M. (2014). Protective effects of lupeol against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. Journal of Natural Products, 77(11), 2383-2388.
    Kim, S. B., Kang, O. H., Lee, Y. S., Han, S. H., Ahn, Y. S., Cha, S. W., & Kwon, D. Y. (2016). Hepatoprotective effect and synergism of bisdemethoycurcumin against MCD Diet-induced nonalcoholic fatty liver disease in mice. PloS One, 11(2), 147745-147759.
    Kiziltas, S. (2016). Toll-like receptors in pathophysiology of liver diseases. World Journal of Hepatology, 8(32), 1354-1369.
    Knodell, R. G., Ishak, K. G., Black, W. C., Chen, T. S., Craig, R., Kaplowitz, N., Kiernan T. W., & Wollman, J. (1981). Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology, 1(5), 431-435.
    Koyama, Y., & Brenner, D. A. (2017). Liver inflammation and fibrosis. The Journal of Clinical Investigation, 127(1), 55-64.
    Krüger, A. (2015). Premetastatic niche formation in the liver: emerging mechanisms and mouse models. Journal of Molecular Medicine, 93(11), 1193-1201.
    Kubola, J., & Siriamornpun, S. (2008). Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry, 110(4), 881-890.
    Kumari, A., & Kakkar, P. (2012). Lupeol protects against acetaminophen-induced oxidative stress and cell death in rat primary hepatocytes. Food and Chemical Toxicology, 50(5), 1781-1789.
    Kurzepa, J., Mdro, A., Czechowska, G., Kurzepa, J., Celiński, K., Kazmierak, W., & Slstrokomka, M. (2014). Role of MMP-2 and MMP-9 and their natural inhibitors in liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases. Hepatobiliary and Pancreatic Diseases International, 13(6), 570-579.
    Lee, M. K., Ha, N. R., Yang, H., Sung, S. H., Kim, G. H., & Kim, Y. C. (2008). Antiproliferative activity of triterpenoids from Eclipta prostrata on hepatic stellate cells. Phytomedicine, 15(9), 775-780.
    Lee, I., Kim, H., Youn, U., Kim, J., Min, B., Jung, H., & Bae, K. (2010). Effect of lanostane triterpenes from the fruiting bodies of Ganoderma lucidum on adipocyte differentiation in 3T3-L1 cells. Planta Medica, 76(14), 1558-1563.
    Li, Z. W., Kuang, Y., Tang, S. N., Li, K., Huang, Y., Qiao, X., Yu, S. W., Tzeng, Y. M., Lo, J. Y., & Ye, M. (2017). Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl4-induced liver injury in mice. Journal of Ethnopharmacology, 206, 31-39.
    Li, J., Li, X., Xu, W., Wang, S., Hu, Z., Zhang, Q., Deng, X., Wang, J., Zhang, J., & Guo, C. (2015) Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/mTOR/p70S6K and TGFβ/Smad signalling pathways. Liver International, 35(4):1222-1233.
    Li, S., Liao, X., Meng, F., Wang, Y., Sun, Z., Guo, F., Li, X., Meng, M., Li, Y., & Sun, C. (2014). Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS One, 9(1), 86724-86736.
    Li, H., Wang, Q. J., Zhu, D. N., & Yang, Y. (2008). Reinioside C, a triterpene saponin of Polygala aureocauda Dunn, exerts hypolipidemic effect on hyperlipidemic mice. Phytotherapy Research, 22(2), 159-164.
    Liaskou, E., Wilson, D. V., & Oo, Y. H. (2012). Innate immune cells in liver inflammation. Mediators of Inflammation, 2012, 1-21.
    Liaskou, E., Zimmermann, H. W., Li, K. K., Oo, Y. H., Suresh, S., Stamataki, Z., Qureshi, O., Lalor, P. F., Shaw, J., Syn, W. K., Curbishley, S. M., Adams, D. H., & Curbishley, S. M. (2013). Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology, 57(1), 385-398.
    Liedtke, C., Luedde, T., Sauerbruch, T., Scholten, D., Streetz, K., Tacke, F., Tolba, R., Trautwein, C., Trebicka, J., & Weiskirchen, R. (2013). Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis and Tissue Repair, 6(1), 19-42.
    Limbu, M. H., Lei, L., Zhengyuan, C., Jing, L., Xiaoyi, Z., & Pingsheng, C. (2017). An attempt to establish a common animal model for hepatorenal fibrosis in rats. Pathology Research International, 2017, 1-10.
    Lin, X., Chen, Y., Lv, S., Tan, S., Zhang, S., Huang, R., Zhuo, L., Liang, S., Lu, Z., & Huang, Q. (2015). Gypsophila elegans isoorientin attenuates CCl4-induced hepatic fibrosis in rats via modulation of NF-κB and TGF-β1/Smad signaling pathways. International Immunopharmacology, 28(1), 305-312.
    Liu, C. H., Huang, X. T., Li, Y. Y., Zheng, X., Li, N., Mi, S. Q., & Wang, N. S. (2012). The anti-portal hypertension effect of oleanolic acid in CCl4-induced cirrhosis
    rats. Journal of Chinese Medicinal Materials, 35(6), 930-935.
    Liu, Y., Wen, P. H., Zhang, X. X., Dai, Y., & He, Q. (2018). Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation. International Journal of Molecular Medicine, 42(2), 755-768.
    Lu, K. H., Tseng, H. C., Liu, C. T., Huang, C. J., Chyuan, J. H., & Sheen, L. Y. (2014). Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses. Food and Function, 5(5), 1027-1037.
    Lu, K. H., Weng, C. Y., Chen, W. C., & Sheen, L. Y. (2017). Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats. Journal of Ginseng Research, 41(3), 316-325.
    Lutz, M., & Knaus, P. (2002). Integration of the TGF-β pathway into the cellular signalling network. Cellular Signalling, 14(12), 977-988.
    Mahmoud, M. F., Hamdan, D. I., Wink, M., & El-Shazly, A. M. (2014). Hepatoprotective effect of limonin, a natural limonoid from the seed of Citrus aurantium var. bigaradia, on D-galactosamine-induced liver injury in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 387(3), 251-261.
    Mao, Y., Zhang, S., Yu, F., Li, H., Guo, C., & Fan, X. (2015). Ghrelin attenuates liver fibrosis through regulation of TGF-β1 expression and autophagy. International Journal of Molecular Sciences, 16(9), 21911-21930.
    Martín, R., Miana, M., Jurado-López, R., Martínez-Martínez, E., Gómez-Hurtado, N., Delgado, C., Bartolomé, M. V., San Román, J. A., Cordova, C., Lahera, V., Cachofeiro, V., & Nieto, M. L. (2012). DIOL triterpenes block profibrotic effects of angiotensin II and protect from cardiac hypertrophy. PloS One, 7(7), 41545-41558.
    Meindl‐Beinker, N. M., & Dooley, S. (2008). Transforming growth factor‐β and hepatocyte transdifferentiation in liver fibrogenesis. Journal of Gastroenterology and Hepatology, 23, 122-127.
    Moon, H. W., Park, M., Hur, M., Kim, H., Choe, W. H., & Yun, Y. M. (2018). Usefulness of enhanced liver fibrosis, glycosylation isomer of Mac-2 binding protein, galectin-3, and soluble suppression of tumorigenicity 2 for assessing liver fibrosis in chronic liver diseases. Annals of Laboratory Medicine, 38(4), 331-337.
    Mormone, E., George, J., & Nieto, N. (2011). Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chemico-Biological Interactions, 193(3), 225-231.
    Nakatani, T., Honda, E., Hayakawa, S., Sato, M., Satoh, K., Kudo, M., & Munakata, H. (2008). Effects of decorin on the expression of α-smooth muscle actin in a human myofibroblast cell line. Molecular and Cellular Biochemistry, 308(1-2), 201-207.
    Nati, M., Haddad, D., Birkenfeld, A. L., Koch, C. A., Chavakis, T., & Chatzigeorgiou, A. (2016). The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Reviews in Endocrine and Metabolic Disorders, 17(1), 29-39.
    Neuzillet, C., de Gramont, A., Tijeras-Raballand, A., de Mestier, L., Cros, J., Faivre, S., & Raymond, E. (2014). Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget, 5(1), 78-94.
    Ogaly, H. A., Eltablawy, N. A., & Abd-Elsalam, R. M. (2018). Antifibrogenic influence of Mentha piperita L. essential oil against CCl4-induced liver fibrosis in rats. Oxidative Medicine and Cellular Longevity, 2018, 1-15.
    Pal, S., Sarkar, A., Pal, P. B., & Sil, P. C. (2015). Protective effect of arjunolic acid against atorvastatin induced hepatic and renal pathophysiology via MAPK, mitochondria and ER dependent pathways. Biochimie, 112, 20-34.
    Pellicoro, A., Ramachandran, P., Iredale, J. P., & Fallowfield, J. A. (2014). Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature
    Reviews Immunology, 14(3), 181-194.
    Peng, R., Wang, S., Wang, R., Wang, Y., Wu, Y., & Yuan, Y. (2017). Antifibrotic effects of tanshinol in experimental hepatic fibrosis by targeting PI3K/AKT/mTOR/p70S6K1 signaling pathways. Discovery Medicine, 23(125), 81-94.
    Qu, Y., Chen, W. H., Zong, L., Xu, M. Y., & Lu, L. G. (2012). 18α-Glycyrrhizin induces apoptosis and suppresses activation of rat hepatic stellate cells. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 18(1), 24-32.
    Raish, M., Ahmad, A., Ansari, M. A., Alkharfy, K. M., Aljenoobi, F. I., Jan, B. L., Al-Mohizea, A. M., Altaf, K., & Ali, N. (2018). Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. International Journal of Biological Macromolecules, 111, 193-199.
    Ramachandran, P., Pellicoro, A., Vernon, M. A., Boulter, L., Aucott, R. L., Ali, A., Hartland, S. N., Snowdon, V. K., Cappon, A., Gordon-Walker, T. T., Williams, M. J., Dunbar, D. R., Manning, J. R., Rooijen, N. V., Fallowfield, J. A., Forbes, S. J., & Iredale, J. P. (2012). Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proceedings of the National Academy of Sciences, 109(46), 3186-3195.
    Ries, C. (2014). Cytokine functions of TIMP-1. Cellular and Molecular Life Sciences, 71(4), 659-672.
    Rivera, C. A., Bradford, B. U., Hunt, K. J., Adachi, Y., Schrum, L. W., Koop, D. R., Burchardt, E. R., Rippe, R. A., & Thurman, R. G. (2001). Attenuation of CCl4-induced hepatic fibrosis by GdCl3 treatment or dietary glycine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 281(1), 200-207.
    Robert, S., Gicquel, T., Victoni, T., Valenca, S. S., Barreto, E., Bailly-Maître, B., Boichot, E., & Lagente, V. (2016). Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Bioscience Reports, 36, 1-11.
    Sagor, A. T., Chowdhury, M. R. H., Tabassum, N., Hossain, H., Rahman, M. M., & Alam, M. A. (2015). Supplementation of fresh ucche (Momordica charantia L. var. muricata Willd) prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats. BioMed Central Complementary and Alternative Medicine, 15(1), 115-123.
    Sanyal, A. J., Brunt, E. M., Kleiner, D. E., Kowdley, K. V., Chalasani, N., Lavine, J. E., Ratziu. V., & McCullough, A. (2011). Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology, 54(1), 344-353.
    Schuppan, D., & Kim, Y. O. (2013). Evolving therapies for liver fibrosis. The Journal of Clinical Investigation, 123(5), 1887-1901.
    Sebastiani, G., Gkouvatsos, K., & Pantopoulos, K. (2014). Chronic hepatitis C and liver fibrosis. World Journal of Gastroenterology, 20(32), 11033-11053.
    Seki, E., & Brenner, D. A. (2008). Toll‐like receptors and adaptor molecules in liver disease: update. Hepatology, 48(1), 322-335.
    Seki, E., De Minicis, S., Osterreicher, C. H., Kluwe, J., Osawa, Y., Brenner, D. A., & Schwabe, R. F. (2007). TLR4 enhances TGF-β signaling and hepatic fibrosis. Nature Medicine, 13(11), 1324-1332.
    Seki, E., Tsutsui, H., Iimuro, Y., Naka, T., Son, G., Akira, S., Kishimoto, T., Nakanishi, K., & Fujimoto, J. (2005). Contribution of Toll‐like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology, 41(3), 443-450.
    Semenov, D. E., Zhukova, N. A., Ivanova, E. P., Sorokina, I. V., Baiev, D. S., Nepomnyashchikh, G. I., Tolstikova, T. G., & Biryukova, M. S. (2015). Hepatoprotective properties of betulonic acid amide and heptral in toxic liver injury induced by carbon tetrachloride in combination with ethanol. Bulletin of Experimental Biology and Medicine, 158(3), 336-341.
    Shaker, M. E., Shiha, G. E., & Ibrahim, T. M. (2011). Comparison of early treatment with low doses of nilotinib, imatinib and a clinically relevant dose of silymarin in thioacetamide-induced liver fibrosis. European Journal of Pharmacology, 670(2-3), 593-600.
    Shen, M., Chen, K., Lu, J., Cheng, P., Xu, L., Dai, W., Fan, W., Lei, H., Yan, Z., Wang, C., Jingjing, L., Jing, Y., Rong, Z., Huawei, Z., Yuanyuan, Z., Yingqun, Z., & Li, J. (2014). Protective effect of astaxanthin on liver fibrosis through modulation of TGF-1 expression and autophagy. Mediators of Inflammation, 2014, 1-14.
    Shigeshiro, M., Tanabe, S., & Suzuki, T. (2013). Dietary polyphenols modulate intestinal barrier defects and inflammation in a murine model of colitis. Journal of Functional Foods, 5(2), 949-955.
    Shirabe, K., Bekki, Y., Gantumur, D., Araki, K., Ishii, N., Kuno, A., Hisashi, Narimatsu., & Mizokami, M. (2018). Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: more than a biomarker of liver fibrosis. Journal of Gastroenterology,53(7), 819-826.
    Sica, A., Invernizzi, P., Sun, M., & Kisseleva, T. (2015). Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology, 39, 60-63.
    Su, G. L., Wang, S. C., Aminlari, A., Tipoe, G. L., Steinstraesser, L., & Nanji, A. (2004). Impaired hepatocyte regeneration in toll-like receptor 4 mutant mice. Digestive Diseases and Sciences, 49(5), 843-849.
    Sumida, Y., & Yoneda, M. (2017). Current and future pharmacological therapies for NAFLD/NASH. Journal of Gastroenterology, 53(3), 362-376.
    Sun, K. H., Chang, Y., Reed, N. I., & Sheppard, D. (2016). α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 310(9), 824-836.
    Surendran, S. P., Thomas, R. G., Moon, M. J., & Jeong, Y. Y. (2017). Nanoparticles for the treatment of liver fibrosis. International Journal of Nanomedicine, 12, 6997-7006.
    Szuster-Ciesielska, A., Plewka, K., & Kandefer-Szerszeń, M. (2011). Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells. Pharmacological Reports, 63(5), 1109-1123.
    Tacke, F. (2012). Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis and Tissue Repair, 5(1), 27.
    Tacke, F., & Zimmermann, H. W. (2014). Macrophage heterogeneity in liver injury and fibrosis. Journal of Hepatology, 60(5), 1090-1096.
    Tang, L. X., He, R. H., Yang, G., Tan, J. J., Zhou, L., Meng, X. M., Huang, X. R., & Lan, H. Y. (2012). Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PloS One, 7(2), 31350-31362.
    Thirupathi, A., Silveira, P. C., Nesi, R. T., & Pinho, R. A. (2017). β-Amyrin, a pentacyclic triterpene, exhibits anti-fibrotic, anti-inflammatory, and anti-apoptotic effects on dimethyl nitrosamine–induced hepatic fibrosis in male rats. Human and Experimental Toxicology, 36(2), 113-122.
    Tongia, A., Tongia, S. K., & Dave, M. (2004). Phytochemical determination and extraction of Momordica charantia fruit and its hypoglycemic potentiation of oral hypoglycemic drugs in diabetes mellitus (NIDDM). Indian Journal of Physiology and Pharmacology, 48(2), 241-244.
    Tsai, T. H., Huang, C. J., Wu, W. H., Huang, W. C., Chyuan, J. H., & Tsai, P. J. (2014). Antioxidant, cell-protective, and anti-melanogenic activities of leaf extracts from
    wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) cultivars. Botanical Studies, 55(1), 78-88.
    Tsuchida, T., & Friedman, S. L. (2017). Mechanisms of hepatic stellate cell activation. Nature Reviews Gastroenterology and Hepatology, 14(7), 397-411.
    Van-Beers, B. E., Materne, R., Annet, L., Hermoye, L., Sempoux, C., Peeters, F., Smith, A. M., Jamart, J., & Horsmans, Y. (2003). Capillarization of the sinusoids in liver fibrosis: Noninvasive assessment with contrast enhanced MRI in the rabbit. Magnetic Resonance in Medicine, 49(4), 692-699.
    Wang, H. Y., Kan, W. C., Cheng, T. J., Yu, S. H., Chang, L. H., & Chuu, J. J. (2014). Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food and Chemical Toxicology, 69, 347-356.
    Watanabe, A., Sohail, M. A., Gomes, D. A., Hashmi, A., Nagata, J., Sutterwala, F. S., Mahmood, S., Jhandier, M. N., Shi, Y., Flavell, R. A., & Mehal, W. Z. (2009). Inflammasome-mediated regulation of hepatic stellate cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 296(6), 1248-1257.
    Weber, L. W., Boll, M., & Stampfl, A. (2003). Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Critical Reviews in Toxicology, 33(2), 105-136.
    Wu, S. J., & Ng, L. T. (2008). Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. LWT-Food Science and Technology, 41(2), 323-330.
    Xiang, Z., Tang, C., Chen, G., & Shi, Z. (2001). Studied on corlorimetric determination of oleanolic acid in Chinese quince. Natural Product Research and Development, 13(4), 23-26.
    Xu, J., Cao, K., Li, Y., Zou, X., Chen, C., Szeto, I. M. Y., Dong, Z., Zhao, Y., Shi, Y., Wang, J., Liu, J., & Liu, J. (2014). Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet-3. The Journal of Nutrition, 144(4), 475-483.
    Yan, S. L., Yang, H. T., Lee, H. L., & Yin, M. C. (2014). Protective effects of maslinic acid against alcohol-induced acute liver injury in mice. Food and Chemical Toxicology, 74, 149-155.
    Yang, L., & Seki, E. (2012). Toll-like receptors in liver fibrosis: cellular crosstalk and mechanisms. Frontiers in Physiology, 3, 138-155.
    Yi, J., Zhu, R., Wu, J., Wu, J., & Tan, Z. (2015). Ameliorative effect of betulinic acid on oxidative damage and apoptosis in the splenocytes of dexamethasone treated mice. International Immunopharmacology, 27(1), 85-94.
    Yoshida, K., & Matsuzaki, K. (2012). Differential regulation of TGF-β/Smad signaling in hepatic stellate cells between acute and chronic liver injuries. Frontiers in Physiology, 3, 53-59.
    Younis, T., Khan, M. R., & Sajid, M. (2016). Protective effects of Fraxinus xanthoxyloides (wall.) leaves against CCl4 induced hepatic toxicity in rat. BioMed Central Complementary and Alternative Medicine, 16(1), 407-419.
    Yu, Y., Zhang, X. H., Ebersole, B., Ribnicky, D., & Wang, Z. Q. (2013). Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Scientific Reports, 3, 3142-3149.
    Zakaria, Z. A., Yahya, F., Mamat, S. S., Mahmood, N. D., Mohtarrudin, N., Taher, M., Hamid, S. S. A., Teh, L. K., & Salleh, M. Z. (2016). Hepatoprotective action of various partitions of methanol extract of Bauhinia purpurea leaves against paracetamol-induced liver toxicity: involvement of the antioxidant mechanisms. BioMed Central Complementary and Alternative Medicine, 16(1), 175-190.
    Zhang, Y. E. (2009). Non-Smad pathways in TGF-β signaling. Cell Research, 19(1), 128-139.

    無法下載圖示 本全文未授權公開
    QR CODE