研究生: |
陳俞廷 Yu-Ting Chen |
---|---|
論文名稱: |
以周道積分解三維光子晶體之廣義特徵值問題 Solve three dimensional photonic crystal general eigenvalue problem by contour integral |
指導教授: |
黃聰明
Huang, Tsung-Ming |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | 特徵值問題 、週道積分 、三維光子晶體 、平行運算 |
英文關鍵詞: | general eigenvalue problem, contour integral, three dimensional photonic crystal, parallel computing |
論文種類: | 學術論文 |
相關次數: | 點閱:99 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,主要測試周道積分法(Contour integral)\cite {S2}的效能,測試並歸納出一些較好的使用原則。我們以此方法針對三維光子晶體的馬克斯威爾方程(Maxwell equation)取時諧波(time harmonic)後經過K. Yee的離散化程序\cite{T1}得到的廣義特徵值問題作效能的測試,觀察各參數間的交互作用,並且將其與E. Polizzi的FEAST\cite{E1,E2,E3}結合而提出了混合型的演算法。最後對這混合型的演算法與傳統的Lanczos作效能上的比較。文中的三維光子晶體馬克斯威爾方程包含兩種情形分別為簡易立方晶格(SC,Simple Cube)和面心立方晶格(FCC,Face Centered cube),並分為是否除去零空間(null space free)的兩種情況,於理論部分僅提供較簡易的簡易立方晶格的介紹,而我們的數值結果則著重於應用較廣的面心立方晶格。
In this papper, we consider to solve general eigenvalue problem for three dimensional photonic crystal by contour integral, and focus on the solver's efficacy. At first, we take the time harmonic for three dimensional photonic crystal's Maxwell equation , and Discrete by Yee's scheme,then test the parameter for the sovler. We explain the implications of parameter for CIRR,and compare it with FEAST.After all, We propose a hybrid solver MLCIRR, it Combine CIRR and FEAST.
J. Asakura, T. Sakurai, H. Tadano, T. Ikegami and K. Kimura, A numerical method for nonlinear eigenvalue problems using contour integrals, JSIAM Letters, Vol.1,52-55 (2009).
Y. Futamura, H. Tadano, and T. Sakurai, Parallel stochastic estimation method of eigenvalue distribution, JSIAM Letters, Vol. 2, 127-130, (2010).
T.-M. Huang, H.-E. Hsieh, W.-W. Lin and W. Wang, Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three dimensional photonic crystals, SIAM J. Matrix Anal. Appl., Vol. 34, 369-391(2013)
T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang.Fast lanczos eigenvalue solvers for band structures of three dimensional photonic Crystals with face-centered cubic lattice(preprint)
T.-M. HUANG, Y.-L. Huang.W.-W. Lin, and W.-C. Wang, A Null space free Jacobi-Davidson iteration for maxwell's operator(preprint)
T.-M. Huang, W.-J. Chang, Y.-L. Huang, W.-W. Lin, W.-C. Wang and W. Wang, Preconditioning bandgap eigenvalue problems in three dimensional photonic crystals simulations, Journal of Computational Physics, Vol. 229,8684-8703(2010)
T.-M. Huang, Y.-C. Kuo and W. Wang, Computing extremal eigenvalues for three-dimensional photonic crystals with wave vectors near the Brillouin zone center, J. Sci. Comput., Vol. 55, 529-551(2013)
T. Ikegami and T. Sakurai, Contour integral eigensolver for non-Hermitian systems: a Rayleigh-Ritz-type approach, RANMEP2008Taiwanese J. Math., Vol. 14, pp. 825--837 (2010).
T. Ikegami, T. Sakurai, U. Nagashima, A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method,CS-TR-08-13, Tsukuba (2008)
A. Levin, D. Zhang, E. Polizzi, FEAST fundamental framework for electronic structure calculations: reformulation and solution of the muffintin problem computer physics communications, V183, I11, 2370-2375 (2012)
E. Polizzi, Density-matrix-based algorithms for solving eingenvalue problems Phys. Rev. B., Vol. 79, 115112 (2009)
E. Polizzi,A high-performance numerical library for solving eigenvalue problems: FEAST solver user's guide v2.1s,(2013)
T. Sakurai, J. Asakura, H. Tadano, T. Ikegami and K. Kimura, A method for finding zeros of polynomial equations using a contour integral based eigensolver, Proc. Symbolic Numeric Computations 2009, Kyoto. 143-147 (2009)
T. Sakurai, J. Asakura, H. Tadano and T. Ikegami, Error analysis for a matrix pencil of Hankel matrices with perturbed complex moments, JSIAM Letters, Vol. 1,76-79 (2009).
T. Sakurai, H. Sugiura, A projection method for generalized eigenvalue problems, ISE-TR-02-189, Tsukuba,(2002)
T. Sakurai, H. Tadano, CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems, Proc. The First China-Japan-Korea Joint Conference on Numerical Mathematics, Vol. 36,745-757 (2007).
T. Sakurai, H. Tadano, T. Ikegami, U. Nagashima, A parallel eigensolver using contour integration for generalized eigenvalue problems in molecular simulation, CS-TR-08-14, Tsukuba(2008)
K. Senzaki, H. Tadano, T. Sakurai and Z. Bai, A method for profiling the distribution of eigenvalues using the AS method,RANMEP 2008 Taiwanese J. Math, Vol. 14,839-853 (2010).
M. Suzuki, I. Suzuk, Bloch theorem and Energy band, Lecture Note on Solid State Physics(2006)
P.-T. Tang, E. Polizzi,FEAST as a subspace iteration eigensolver Aacelerated by approximate spectral projection,SIMAX, (accepted)
I. Yamazaki, T. Ikegami, H. Tadano, T. Sakurai, Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method, Parallel Computing ,39,280–290.(2013)
C. Yang, W.-G. Gao, Z.-J. Bai, X.-S. Li, L.-Q. Lee,
P. Husbands. An algebraic substructuring method for large-scale eigenvalue calculation. SIAM J. SCI. COMPUT. Vol. 27, No. 3. 873–892(2005)
K.-S. Yee, Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media,IEEE Trans. Antennas Propagat.AP-14(3), 302-307. (1966)