簡易檢索 / 詳目顯示

研究生: 李健恆
Lei, Kin-Hang
論文名稱: 高一學生視覺化轉化為幾何推理之過程及其特徵
The Thinking Characteristics of the Shifts from Visualization to Geometrical Reasoning by Students in Senior One
指導教授: 左台益
Tso, Tai-Yih
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 167
中文關鍵詞: 動態幾何推理過程幾何推理視覺化
英文關鍵詞: dynamic geometry, reasoning process, geometrical reasoning, visualization
DOI URL: http://doi.org/10.6345/NTNU201900633
論文種類: 學術論文
相關次數: 點閱:171下載:47
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 推理是數學研究與學習中的重要工作,演繹推理更是國中幾何學習的重點,卻也是學生不易掌握的內容之一。在幾何推理的過程中,圖像與概念密切地相互作用,且從圖像中獲取的資訊會與個體心智中的想法作連結,從而進行幾何推理的視覺化過程,將能提供學習者在推理過程中所展現特徵的重要參考。隨著科技快速發展,科技工具提供有效的構圖、視覺化及推理支助。然而,幾何推理對學習者來說仍然存在相當的困難,這樣的工具也沒有在學習幾何推理時被廣泛使用。本研究目的在探討已習相關幾何內容的高一學生,透過質性訪談分析他們從視覺化轉化為幾何推理的過程及特徵。訪談內容包含三個幾何推理任務,學生以口述方式在紙筆或動態幾何環境下說明對這些推理任務的想法,並整合Toulmin論證模型和在動態幾何環境推論的特色,由此分析訪談逐字稿及錄影影像進行學生之推理過程。研究結果顯示不同知識程度的學生在論述策略的選取、尋找不變量以及直觀條件的使用對其推理歷程有較大的影響,使用動態幾何軟體則有助於他們發展一般化的推理結果。由學生從視覺化到幾何推理的過程中,藉由幾何知識與幾何物件之間的連結,可以分為以物件外觀為主導、以物件元素為主導、以幾何知識為主導和以邏輯關係為主導四個階層描述,其中依據子圖的層次關係與圖形的結構,以幾何知識為主導和以邏輯關係為主導的階層又各細分為兩個層次來描述。未來教學及研究可考慮兼顧推理過程中各個階段以及培養不同視覺化轉化幾何推理階層的任務設計,並探討學生在上述任務設計的表現及主要困難,以進一步幫助學生發展適當的視覺化以達到不同階層的幾何推理。

    Reasoning and argumentation are essential for mathematical studies and learning. Deductive reasoning is the main learning objective of geometry in junior secondary school; however, it is one of the hardest skills to master for students. In the process of geometrical reasoning, figures and concepts interact simultaneously. The process from visualization to geometrical reasoning is mainly supported by the connection between the information from the figures and the ideas from individuals’ mind. An important reference can be provided by revealing students’ characteristics during their reasoning process. With the rapid development of science and technology, technological tools can provide effective support for construction, visualization, and reasoning. However, geometrical reasoning is still difficult for students and the tools are also not yet widely accepted in the learning of geometrical reasoning. This study aims at discussing the reasoning process and characteristics for the shifts from visualization to geometrical reasoning by students in senior one who have already learnt geometry. Using a semi-structured interview, three reasoning tasks are used. Students are asked to orally present their ideas about the tasks with a paper-and-pencil or dynamic geometry environment. Their reasoning process is analyzed by their transcripts and captions using the combination of Toulmin’s argument model and the reasoning features of dynamic geometry environment. Results showed that selecting argumentative strategies, finding the invariances, and using intuitive judgment are the main elements that can influence the reasoning process for students with different levels of knowledge. The geometrical imagination mainly supports an effective conjecture and then the dynamic geometry environment encourages the generalization of reasoning results. Hence, the shifts from visualization to geometrical reasoning can be described as the connection between geometrical knowledge and geometric objects by four levels: appearance-oriented, element-oriented, knowledge-oriented, and logic-oriented. By the structure of the figure and the relation of the sub-figures, the knowledge-oriented and logic-oriented levels are also described by two sub-levels respectively. Future studies may consider designing geometrical tasks that include various stages of reasoning process and different visualization levels for geometrical reasoning instruction. Students’ performance and difficulties with these geometrical tasks are required to analyze and discuss for developing suitable visualizations with different levels of geometrical reasoning.

    第壹章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的與問題 5 第三節 名詞解釋 5 第貳章 文獻探討 6 第一節 視覺化 6 第二節 幾何推理 9 第三節 幾何論證的思維發展及其影響要素 13 第四節 動態幾何環境 16 第參章 研究方法 22 第一節 研究設計 22 第二節 研究流程 23 第三節 研究對象 25 第四節 研究工具 27 第五節 資料分析 32 第肆章 研究結果 37 第一節 學生視覺化轉化幾何推理之過程 37 第二節 幾何知識對視覺化轉化幾何推理之影響 119 第三節 動態幾何環境對視覺化轉化幾何推理之影響 144 第伍章 討論與建議 149 第一節 結論與討論 149 第二節 教學及研究建議 151 參考文獻 153 附錄一:多向度幾何知識問卷 162 附錄二:多向度幾何知識問卷評分標準 165

    吳志揚、陳文豪(2004)。幾何學發展史簡介。數學傳播,28(1),24-33。
    呂柏彥(2017)。台北市高中生數學作業態度和學習表現之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    林志能、洪振方(2008)。論證模式分析及其評量要素。科學教育月刊,312,2-18。
    翁立衛(2008)。圖在幾何解題中所扮演的角色。科學教育月刊,308,7-15。
    教育部(2018)。十二年國民基本教育課程綱要:國民中小學暨普通型高級中等學校(數學領域)。臺北:作者。
    黃哲男(2001)。於動態幾何環境下國中生動態心像建構與幾何推理之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    鄭英豪(2010年6月)。國小學生視覺化幾何性質圖型的困難。「2010數學暨資訊教育研討會」發表之論文,國立臺北教育大學。
    Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26, 147-179.
    Ali, I., Bhagawati, S., & Sarmah, J. (2014). Performance of geometry among the secondary school students of Bhurbandha CD Block of Morigaon District, Assam, India. International Journal of Innovative Research & Development, 3(11), 73-77.
    Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241.
    Arici, S., & Aslan-Tutak, F. (2013). The effect of origami-based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13(1), 179-200.
    Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM – The International Journal on Mathematics Education, 34(3), 66-72.
    Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225-253.
    Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2017). Designing non-constructability tasks in a dynamic geometry environment. In A. Leung & A. Baccaglini-Frank (Eds.), Digital technologies in designing mathematics education tasks: Potential and pitfalls (pp. 99-120). Cham, Switzerland: Springer.
    Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 843-908). Charlotte, NC: Information Age Publishing.
    Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education. International newsletter on the teaching and learning of mathematical proof, 7/8.
    Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 179-209). Belo Horizonte, Brazil: PME.
    Boz, N. (2005). Dynamic visualization and software environments. The Turkish Online Journal of Educational Technology, 4(1), 26-32.
    Brockriede, W., & Ehninger, D. (1978). Toulmin on argument: An interpretation and application. Quarterly Journal of Speech, 46(1), 44-53.
    Bussi, M. G. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 746-783). New York, NY: Routledge.
    Casey, E. S. (2000). Imagining: A phenomenological study (2nd ed.). Bloomington, IN: Indiana University Press.
    Chinnappan, M. (1998). Schemas and mental models in geometry problem solving. Educational Studies in Mathematics, 36(3), 201-217.
    Chinnappan, M., Ekanayake, M. B., & Brown, C. (2012). Knowledge use in the construction of geometry proof by Sri Lankan students. International Journal of Science and Mathematics Education, 10(4), 865-887.
    Choi-Koh, S. S. (1999). A student’s learning of geometry using the computer. The Journal of Educational Research, 92(5), 301-311.
    Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). New York, NY: Macmillan.
    Common Core State Standards Initiative. (2010). Common core state standards for mathematics. Retrieved from http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
    Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. In M. M. Lindquist (Ed.), Learning and teaching geometry, K-12: 1987 Yearbook of the National Council of teachers of mathematics (pp. 1-16). Reston, VA: National Council of Teachers of Mathematics.
    de Guzmán, M. (2002, July). The role of visualization in the teaching and learning of mathematics analysis. Paper presented at the 2nd International Conference on the Teaching of Mathematics (at the Undergraduate Level), Hersonissos, Greece.
    de Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 7-24.
    de Villiers, M. D. (1995). An alternative introduction to proof in dynamic geometry. MicroMath, 11(12), 14-19.
    Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education. In F. Furinghetti (Ed.), Proceedings of the 15th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 33-48). Assisi, Italy: PME.
    Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In R. Sutherland & J. Mason (Eds), Exploiting mental imagery with computers in mathematics education (pp. 142-157). Berlin, Germany: Springer.
    Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 37-52). Dordrecht, The Netherlands: Kluwer Academic Publishers.
    Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162.
    Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74(2), 163-183.
    Gawlick, T. (2005). Connect arguments to actions – Dynamic geometry as means for the attainment of higher van Hiele levels. ZDM – The International Journal on Mathematics Education, 37(5), 361-370.
    Gegenfurtner, A., Lehtinen, E., & Säljö, R. (2011). Expertise differences in the comprehension of visualizations: A meta-analysis of eye-tracking research in professional domains. Educational Psychology Review, 23(4), 523-552.
    Guven, B. (2008). Using dynamic geometry software to gain insight into a proof. International Journal of Computers for Mathematical Learning, 13(3), 251-262.
    Habre, S. (2001). Visualization enhanced by technology in the learning of multivariable calculus. International Journal for Technology in Mathematics Education, 8(2), 115-130.
    Hadas, N., Hershkowitz, R., & Schwarz, B. B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44(1-3), 127-150.
    Hadas, N., Hershkowitz, R., & Schwarz, B. B. (2002). Analyses of activity design in geometry in the light of student actions. Canadian Journal of Science, Mathematics and Technology Education, 2(4), 529-552.
    Hanna, G., & de Villiers, M. (2008). ICMI study 19: Proof and proving in mathematics education. ZDM Mathematics Education, 40(2), 329-336.
    Hanna, G., & de Villiers, M. (Eds.) (2012). Proof and proving in mathematics education: The 19th ICMI study. Dordrecht, The Netherlands: Springer.
    Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. CBMS Issues in Mathematics Education, 7, 234-283.
    Hattermann, M. (2010). The drag-mode in three dimensional dynamic geometry environments – Two studies. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 786-795). Lyon, France: Institut National de Recherche Pédagogique.
    Hauptman, H., & Cohen, A. (2011). The synergetic effect of learning styles on the interaction between virtual environments and the enhancement of spatial thinking. Computers & Education, 57(3), 2106-2117.
    Healy, L. (2000). Identifying and explaining geometrical relationship: Interactions with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 103-117). Hiroshima, Japan: Hiroshima University.
    Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14(3), 343-351.
    Hemmi, K., & Löfwall, C. (2010). Why do we need proof. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 201-210). Lyon, France: Institut National de Recherche Pédagogique.
    Herbst, P. G. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49, 283-312.
    Hohenwarter, M., & Fuchs, K. (2004, July). Combination of dynamic geometry, algebra and calculus in the software system GeoGebra. Paper presented at Computer Algebra Systems and Dynamic Geometry Systems in Mathematics Teaching Conference, Pécs, Hungary.
    Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164-192.
    Hölzl, R. (1996). How does 'dragging' affect the learning of geometry. International Journal of Computers for Mathematical Learning, 1(2), 169-187.
    Houdement, C., & Kuzniak, A. (2004). Elementary geometry split into different geometrical paradigms. In M. Mariotti (Ed.), Proceedings of the Third Conference of the European Society for Research in Mathematics Education. Bellaria, Italy: University of Pisa and ERME. Retrieved from http://www.dm.unipi.it/~didattica/CERME3/proceedings/Groups/TG7/TG7_Houdement_cerme3.pdf
    Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 121-128). Dordrecht, The Netherlands: Kluwer Academic Publishers.
    Jackiw, N. (2001). The Geometer's Sketchpad (Version 4.0) [Computer software]. Emeryville, CA: Key Curriculum Press.
    Johnson, G. J., Thompson, D. R., & Senk, S. L. (2010). Proof-related reasoning in high school textbooks. Mathematics Teacher, 103(6), 410-417.
    Keşan, C., & Çalişkan, S. (2013). The effect of learning geometry topics of 7th grade in primary education with dynamic geometer’s sketchpad geometry software to success and retention. The Turkish Online Journal of Educational Technology, 12(1), 131-138.
    Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
    Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements of expertise in geometry. Cognitive Science, 14(4), 511-550.
    Komatsu, K., & Jones, K. (2019). Task design principles for heuristic refutation in dynamic geometry environments. International Journal of Science and Mathematics Education, 17(4), 801-824.
    Kordaki, M., & Balomenou, A. (2006). Challenging students to view the concept of area in triangles in a broad context: Exploiting the features of Cabri-II. International Journal of Computers for Mathematical Learning, 11(1), 99-135.
    Kösa, T., & Karakuş, F. (2010). Using dynamic geometry software Cabri 3D for teaching analytic geometry. Procedia Social and Behavioral Sciences, 2(2), 1385-1389.
    Kospentaris, G., Spyrou, P., & Lappas, D. (2011). Exploring students’ strategies in area conservation geometrical tasks. Educational Studies in Mathematics 77(1), 105-127.
    Kramarski, B., & Gutman, M. (2006). How can self-regulated learning be supported in mathematical E-learning environments? Journal of Computer Assisted Learning, 22(1), 24-33.
    Kramarski, B., & Hirsch, C. (2003). Using computer algebra systems in mathematics classrooms. Journal of Computer Assisted Learning, 19(1), 35-45.
    Kramarski, B., & Ritkof, R. (2002). The effects of metacognition and email interactions on learning graphing. Journal of Computer Assisted Learning, 18(1), 33-43.
    Kutluca, T. (2013). The effect of geometry instruction with dynamic geometry software; GeoGebra on Van Hiele geometry understanding levels of students. Educational Research and Reviews, 8(17), 1509-1518.
    Laborde, C. (1993). The computer as a part of the learning environment: The case of geometry. In C. Keitel & K. Ruthven (Eds.), Learning from computers: Mathematics education and technology (pp. 48-67). Berlin, Germany: Springer-Verlag.
    Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1/2), 151-156.
    Laborde, C. (2005a). The hidden role of diagrams in students' construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, O. Skovsmose, & P. Valero (Eds.), Meaning in mathematics education (pp. 159-179). New York, NY: Springer.
    Laborde, C. (2005b). Robust and soft constructions: Two sides of the use of dynamic geometry environments. In S. C. Chu, H. C. Lew, & W. C. Yang (Eds.), Proceedings of the 10th Asian Technology Conference in Mathematics (pp. 22-35). Cheongju, South Korea: Korea National University of Education.
    Lanzing, J. W. A., & Stanchev, I. (1994). Visual aspects of courseware engineering. Journal of Computer Assisted Learning, 10(2), 69-80.
    Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65-99.
    Leung, A. (2015). Discernment and reasoning in dynamic geometry environments. In S. J. Cho (Ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 451-469). Cham, Switzerland: Springer.
    Lindquist, M., Philpot, R., Mullis, I. V. S., & Cotter, K. E. (2017). TIMSS 2019 mathematics framework. In I. V. S. Mullis & M. O. Martin (Eds.), TIMSS 2019 assessment frameworks (pp. 13-25). Chestnut Hill, MA: Boston College.
    Llinares, S., & Clemente, F. (2014). Characteristics of pre-service primary school teachers’ configural reasoning. Mathematical Thinking and Learning, 16(3), 234-250.
    Llinares, S., & Clemente, F. (2019). Characteristics of the shifts from configural reasoning to deductive reasoning in geometry. Mathematics Education Research Journal, 31(3), 259-277.
    Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13(2), 157-176.
    Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically (2nd ed.). Harlow, UK: Pearson.
    Mathai, S., & Ramadas, J. (2009). Visuals and visualisation of human body systems. International Journal of Science Education, 31(3), 439-458.
    May, M. (1999). Diagrammatic reasoning and levels of schematization. In T. D. Johansson, M. Skov, & B. Brogaard (Eds.), Iconicity: A fundamental problem in semiotics (pp. 175-193). Aarhus, Denmark: NSU Press.
    Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31-48). New York, NY: Cambridge University Press.
    Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York, NY: Cambridge University Press.
    Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34(2), 365-394.
    Moyer, J. C., Sowder, L., Threadgill-Sowder, J., & Moyer, M. B. (1984). Story problem formats: Drawn versus verbal versus telegraphic. Journal for Research in Mathematics Education, 15(5), 342-351.
    Mudaly, V., & Naidoo, J. (2015). The concrete-representational-abstract sequence of instruction in mathematics classrooms. Perspectives in Education, 33(1), 42-56.
    Nguyen, D. N. (2012). The development of the proving process within a dynamic geometry environment. European Researcher, 32(10-2), 1731-1744.
    Or, A. C. M. (2013). Designing tasks to foster operative apprehension for visualization and reasoning in dynamic geometry environment. In C.Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (Vol. 1, pp. 91-99). Oxford, UK: ICMI.
    Organisation for Economic Co-operation and Development. (2018). PISA 2021 mathematics framework (first draft). Paris, France: Author.
    Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM Mathematics Education, 40(3), 385-400.
    Phillips, L. M., Norris, S. P., Macnab, J. S. (2010). Visualization in mathematics, reading and science education. Dordrecht, The Netherlands: Springer.
    Pierce, R., & Stacey, K. (2011). Using dynamic geometry to bring the real world into the classroom. In L. Bu & R. Schoen (Eds.), Model-centered learning: Pathways to mathematical understanding using GeoGebra (p. 41-55). Rotterdam, The Netherlands: Sense.
    Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191-212.
    Prusak, N., Hershkowitz, R., & Schwarz, B. B. (2012). From visual reasoning to logical necessity through argumentative design. Educational Studies in Mathematics, 79(1), 19-40.
    Ramful, A., Lowrie, T., & Logan, T. (2017). Measurement of spatial ability: Construction and validation of the spatial reasoning instrument for middle school students. Journal of Psychoeducational Assessment, 35(7), 709-727.
    Reiss, K., & Heinze, A. (2004). Knowledge acquisition in students’ argumentation and proof processes. In G. Törner, R. Bruder, A. Peter-Koop, N. Neill, H.-G. Weigand, & B. Wollring (Eds.), Developments in mathematics education in Germany-speaking countries: Selected papers from the annual conference on didactics of mathematics, Ludwigsburg, March 5-9, 2001 (pp. 107-115). Hildesheim, Germany: Deutschland Franzbecker.
    Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Improving students' help-seeking skills using metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 21(2), 267-280.
    Rumsey, C. (2013). A model to interpret elementary-school students’ mathematical arguments. In Lindmeier, A. M. & Heinze, A. (Eds.). Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 121-128). Kiel, Germany: PME.
    Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 101-119.
    Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
    Schwonke, R., Ertelt, A., Otieno, C., Renkl, A., Aleven, V., & Salden, R. J. C. M. (2013). Metacognitive support promotes an effective use of instructional resources in intelligent tutoring. Learning and Instruction, 23, 136-150.
    Sears, R., & Chávez, Ó. (2015). Students of two-curriculum types Performance on a proof for congruent triangles. In K. Krainer & N. Vondrova (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 192-197). Prague, Czech Republic: Charles University in Prague, Faculty of Education and ERME.
    Simon, M. A. (1996). Beyond inductive and deductive reasoning: The search for a sense of knowing. Educational Studies in Mathematics, 30(2), 197-209.
    Sochański, M. (2018). What is diagrammatic reasoning in mathematics?. Logic and Logical Philosophy, 27(4), 567-581.
    Sriraman, B., & Umland, K. (2014). Argumentation in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 46-48). Dordrecht, The Netherlands: Springer.
    Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289-321.
    Stylianides, A. J. (2015). The role of mode of representation in students’argument constructions. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 213-220). Prague, Czech Republic: Charles University.
    Stylianides, A. J., & Ball, D. L. (2008). Understanding and describing mathematical knowledge for teaching: Knowledge about proof for engaging students in the activity of proving. Journal of Mathematics Teacher Education, 11(4), 307-332.
    Stylianides, A. J., & Harel, G. (Eds.). (2018). Advances in mathematics education research on proof and proving: An international perspective. Cham, Switzerland: Springer.
    Stylianides, G. J. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9-16.
    Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical arguments to proof. Journal for Research in Mathematics Education, 40(3), 314-352.
    Stylianou, D. A. (2002). On the interaction of visualization and analysis: The negotiation of a visual representation in expert problem solving. Journal of Mathematical Behavior, 21(3), 303-317.
    Stylianou, D., Chae, N., & Blanton, M. (2006). Students’ proof schemes: A closer look at what characterizes students’ proof conceptions. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 54-60). Mérida, México: Universidad Pedagógica Nacional.
    Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
    Toulmin S. E. (2003). The use of arguments (Updated ed.; 1st ed., 1958). New York, NY: Cambridge University Press.
    Triadafillidis, T. A. (1995). Circumventing visual limitations in teaching the geometry of shapes. Educational Studies in Mathematics, 29(3), 225-235.
    Ubuz, B., & Aydın, U. (2018). Geometry knowledge test about triangles: Evidence on validity and reliability. ZDM Mathematics Education, 50(4), 659-673.
    Vekiri, I. (2002). What is the value of graphical displays in learning? Educational Psychology Review, 14(3), 261-312.
    Venturini, M., & Sinclair, N. (2017). Designing assessment tasks in a dynamic geometry environment. In A. Leung & A. Baccaglini-Frank (Eds.), Digital technologies in designing mathematics education tasks: Potential and pitfalls (pp. 77-98). Cham, Switzerland: Springer.
    Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305.
    Wang, H. C., Li, T. Y., & Chang, C. Y. (2006). A web-based tutoring system with styles-matching strategy for spatial geometric transformation. Interacting with Computers, 18(3), 331-355.
    Wimmer, R. D., & Dominick, J. R. (2014). Mass media research: An introduction (10th ed.). Belmont, CA: Wadsworth.
    Wong, W. K., Yin, S. K., Yang, H. H., & Cheng, Y. H. (2011). Using computer-assisted multiple representations in learning geometry proofs. Educational Technology & Society, 14(3), 43-54.
    Zarzycki, P. (2004). From visualizing to proving. Teaching Mathematics and Its Applications, 23(3), 108-118.
    Zazkis, R., Dubinsky, E., & Dautermann, J. (1996). Coordinating visual and analytic strategies: A study of students' understanding of the group D4. Journal for Research in Mathematics Education, 27(4), 435-457.
    Zimmermann, W., & Cunningham, S. (Eds.) (1991). Editors’ introduction: What is mathematical visualization? In W. Zimmermann & S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 1-8). Washington, DC: Mathematical Association of America.

    下載圖示
    QR CODE