研究生: |
黃建豪 Huang Chien-Hao |
---|---|
論文名稱: |
在H空間中極大元與平衡點的存在性定理 Existence Theorems of Maximal Elements and Equilibria in H-spaces |
指導教授: |
朱亮儒
Chu, Liang-Ju |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | H凸集 、l.c.空間 、Qα-濃縮映射 、極大元 、抽象經濟 、平衡點 、L 、Φ 、L 、Φ |
英文關鍵詞: | H-convex, l.c.-space, Qα-condensing mapping, maximal element, abstract economy, equilibrium point, of class L, of class Φ, Lθ |
論文種類: | 學術論文 |
相關次數: | 點閱:149 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文裡,我們首先把Himmelberg測量precompact集合的方法推廣到一般沒有線性結構的拓樸空間上,進而得到一個一般化的Metha’s Theorem,並應用此結果,對condensing mappings發展一些新的固定點定理。接著我們將建立一些新的極大元存在性及抽象經濟的平衡點存在性。針對兩類majorized的集值函數,我們改善了以前一些常見的存在性定理,並且將它一般化到l.c.-spaces上。
一種是對Lθ-majorized這類的集值函數,利用Tarafdar的固定點定理,在加入一個適當條件下,我們證明了一個common maximal element的存在性,並使用這個結果,推得一個抽象經濟的平衡點存在性;此外,也應用在求擬變分不等式的解。
另一種則是針對Φθ-majorized這類集值函數,我們先利用一個在H-space下已知的KKM principle去推得一個固定點定理,並用這個定理去推出我們想要的一些存在性結果。最後,我們也探討了模糊抽象經濟的平衡點存在性。
[1] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
[2] C. Bardaro and R. Ceppitelli, Some further generealizations of Knaster-
Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl.
132 (198), 484-490.
[3] A. Borglin and H. Keiding, Existence of equilibrium actions and equilibrium : a
note on the `new' existence theorem, J. Math. Econom. 3 (1976), 313-316.
[4] L. J. Chu and C. H. Huang, Generalized selection theorems without convexity,
Nonlinear Anal. TMA 73 (2010), 3224-3231.
[5] L. J. Chu and C. H. Huang, An Extension of Michael's Selection Theorem, Acta
Math. Vietnam. 36(1) (2011), 105-112.
[6] X. P. Ding and E. Tarafder, Some coincidence theorems and applications, Bull.
Austral. Math. Soc. 50 (1994), 73-80.
[7] X. P. Ding, W. K. Kim, and K. K. Tan, Equilibria of non-compact General-
ized Games with L-majorized preference correspondences, J. Math. Anal. Appl. 164
(1992), 508-517.
[8] X. P. Ding and G. X. Z. Yuan, The study of existence of equilibria for generalized
games without lower semicontinuity in locally topological vector spaces, J. Math. Anal.
Appl. 227 (1998), 420-438.
[9] K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces,
Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126.
[10] D. Gale and A. Mas-Colell, An equilibrium existence for a general model without
ordered preferences, J. Math. Econom. 2 (1975), 9-15.
[11] C. J. Himmelberg, J. R. Porter, and F. S. Van Vleck, Fixed point theorems
for condensing multifunctions, Proc. Amer. Math. Soc. 23 (1969), 635-641.
[12] C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156
(1991), 341-357.
[13] C. H. Huang and L. J. Chu, Equilibria of abstract economies with applications,
J. Nonlinear Convex Anal. 14(1) (2013), 63-70.
[14] N. J. Huang, Some new equilibrium theorems for abstract economies, Appl. Math.
Lett. 11(1) (1998), 41-45.
[15] Y. Y. Huang, T. Y. Kuo, and J. C. Jeng, Fixed point theorems for condensing
multimaps on locally G-convex spaces, Nonlinear Anal. 67 (2007), 1522-1531.
[16] J. L. Kelley, General Topology, Springer-Verlag Press, 1975.
[17] W. K. Kim, A maximal element of condensing multimaps, J. Chung. Math. Soc. 6
(1993), 59-63
[18] E. Klein and A. C. Thompson, Theory of Correspondences, John Wiley & Sons,
Inc., 1984.
[19] L. J. Lin and Q. H. Ansari, Collective xed points and maximal elements with
applications to abstract economies, J. Math. Anal. Appl. 296 (2004), 455-472.
[20] L. J. Lin, S. Park and Z. T. Yu, Remarks on xed points, maximal elements, and
equilibria of generalized games, J. Math. Anal. Appl. 233 (1999), 581-596.
[21] X. G. Liu and H. T. Cai, Maximal elements and equilibrium of abstract economy,
Appl. Math. Mech. 22 (2001), 1225V1230.
[22] G. Mehta, Maximal elements of condensing preference maps, Appl. Math. Lett.
3(2) (1990), 69-71.
[23] G. Mehta, K. T. Tan and X. Z. Yuan, Fixed points, maximal elements and
equilibria of generalized games, Nonlinear. Appl. TMA, 28 (1997), 689-699.
[24] A. Mas-Colell, An equilibrium existence without complete or transitive preferences,
J. Math. Econom. 1 (1974) , 237-246.
[25] E. Michael, Continuous selections I, Ann. Math. 63 (1956), 361-382.
[26] S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear. Appl. TMA 48
(2002), 869-879.
[27] M. Patriche, Existence of equilibrium pairs for generalized games, Annals of the
Alexandru Ioan Cuza University - Mathematics 57 (2011), 131-144
[28] D. I. Rim and W. K. Kim, A xed point theorem and existence of equilibrium for
abstract economies, Bull. Austral. Math. Soc. 45 (1992), 385-394.
[29] W. Shafer and H. Sonnenschein, Equilibrium in abstract economies without or-
dered preferences, J. Math. Econom. 2 (1975), 345-348.
[30] K. K. Tan and Z. Wu, A note on abstract economies with upper semicontinous
correspondence, Appl. Math. Lett. 11(5) (1998), 21-22.
[31] K. K. Tan and X. Z. Yuan, Some minimax inequalities and applications to exis-
tence of equilibria in H-spaces, Nonlinear Anal. 24 (1995), 1457-1470.
[32] K. K. Tan and X. Z. Yuan, Lower semicontinuity of multivalued mappings and
equivalent points, Proceedings of the First World Congress of Nonlinear Analysis,
Tampa, FL, 1992, Walter de Gruyter, Berlin/New York (1996), 1849V1860
[33] E. Tarafdar, A xed point theorems in H-spaces and related results, Bull. Austral.
Math. Soc. 42 (1990), 133-140.
[34] E. Tarafdar, Fixed point theorems in H-spaces and equilibrium points of abstract
economies, J Austral. Math. Soc. (Series A) 53 (1992), 252-260.
[35] E. Tarafdar and M. Chowdhury, Topological Methods for Set-Valued Nonlinear
Analysis, World Scientic Publishing Co. Pte. Ltd, Singapore, 2008.
[36] E. Tarafdar and P. J.Watson, Coincidence and the Fan-Glicksberg xed point the-
orem in locally H-convex uniform spaces, Research report, The University of Queens-
land, 1997.
[37] X. Wu, A new xed point theorem and its applications, Proc. Amer. Math. Soc. 125
(1997), 1779-1783.
[38] X. Wu, Existence theorem for maximal elements in H-spaces with applications on
the minimax inequalities and equilibrium of games, J. Appl. Anal. 6 (2000), 283-293.
[39] X. Wu and Z. F. Shen, Equilibrium of abstract economy and generalized quasi-
variational inequality in H-spaces, Topology Appl. 153 (2005), 123-132.
[40] X. Wu and X. Z. Yuan, On equilibrium problem of abstract economy, generalized
quasi-variational inequality, and an optimization problem in locally H-convex spaces,
J. Math. Anal. Appl. 282 (2003), 495-504.
[41] Y. L. Wu, C. H. Huang and L. J. Chu, An extension of Mehta Theorem with
applications, J. Math. Anal. Appl. 391(2) (2012), 489-495.
[42] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equi-
libria in linear topological spaces, J. Math. Econom., 12 (1983), 233-245.
[43] G. X. Z. Yuan , The Study of Minimax Inequalities and Applications to Economies
and Variational Inequalities, Mem. Amer. Math. Soc.,132 (1998)
[44] G. X. Z. Yuan and E. Tarafdar, Maximal elements and equilibria of generalized
games for U-majorized and condensing correspondences, Int. J. Math. Math. Sci., 22
(1999), 179-189.