簡易檢索 / 詳目顯示

研究生: 陳俊友
Chen, Chun-Yu
論文名稱: 可推倒排列的刻劃與性質
The characterization and properties of toppleable permutations
指導教授: 游森棚
Eu, Sen-Peng
口試委員: 郭君逸
Guo, Jun-Yi
丁建太
Ting, Chien-Tai
游森棚
Eu, Sen-Peng
口試日期: 2022/06/08
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 30
中文關鍵詞: 可推倒排列
英文關鍵詞: toppleable permutation, poly-Bernoulli number type B and C
研究方法: 比較研究觀察研究文件分析法
DOI URL: http://doi.org/10.6345/NTNU202200675
論文種類: 學術論文
相關次數: 點閱:51下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在第一章首先會先簡單介紹 toppleable permutation,然後在第二章針對 Arvind Ayyer, Daniel Hathcock 與 Prasad Tetali 等人 [1] 所提出的 rtoppleable permutation 做更進一步的刻劃,另外提出一些與 Arvind Ayyer and Beáta Bényi [2] 所提出的論文之相同與相異之處,最後在第三章提出一個關於數列 t(n, r) 的新結果,還有關於 poly-Bernoulli number type B 和 type C 做 gamma positive 的一些研究與正在整理的猜想。

    In this paper, first we will introduce the toppleable permutation in Chapter 1, then we further describe the r-toppleable permutation proposed by Arvind Ayyer, Daniel Hathcock and Prasad Tetali et al.[1], also present some similarities and differences
    with the paper presented by Arvind Ayyer and Beáta Bényi [2] in Chapter 2, the third chapter presents a new result about the sequence t(n, r), as well as some researches and conjectures that are being sorted out about the poly-Bernoulli number type B and type C being gamma positive.

    1 排列的 Toppling 1 1.1 Topple 的模型 1 1.2 Toppleable Permutation 2 2 關於表格的發現 6 2.1 橫排之和等於下排第一個數字 6 2.2 Pass 7 2.3 n 是奇數時,Sn 的 r-toppleable Permutation 12 2.4 n 是偶數時,Sn 的 r-toppleable Permutation 16 2.5 任意相鄰的 r 其 Toppleable Permutation 之差異 19 3 更多的討論 21 3.1 一些組合結構 21 3.2 一個數列:Poly-Bernoulli Number of Type B 23 3.3 一個數列:Poly-Bernoulli Number of Type C 24 3.4 Poly-Bernoulli Number of Type B 與 Poly-Bernoulli Number of Type C 25 3.5 Poly-Bernoulli Number of Type B 與 Poly-Bernoulli Number of Type C 的 Gamma Positive 27 Bibliography 30

    [1] Arvind Ayyer, Daniel Hathcock, and Prasad Tetali. Toppleable permutations, excedances and acyclic orientations, arXiv:2010.11236, 2020.
    [2] Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, arXiv:2104.13654, 2021.
    [3] P. J. Cameron, C. A. Glass, and R. U. Schumacher. Acyclic orientations and poly-bernoulli numbers. arXiv preprint arXiv:1412.3685, 2014.
    [4] SHIKATA, Miku. Lonesum matrices and poly-Bernoulli numbers. 2011.
    [5] KHERA, Jessica; LUNDBERG, Erik; MELCZER, Stephen. Asymptotic enumeration of lonesum matrices. Advances in Applied Mathematics, 2021, 123: 102118.
    [6] Stéphane Launois, Combinatorics of H-primes in quantum matrices, 2005.
    [7] Béata Bényi and Péter Hajnal. Combinatorics of poly-Bernoulli numbers. Studia Sci. Math. Hungar., 52(4):537–558, 2015.
    [8] Bényi, Beáta, and Péter Hajnal. ”Poly-Bernoulli numbers and Eulerian numbers.” arXiv preprint arXiv:1804.01868, 2018.
    [9] Athanasiadis, Christos A. ”Gamma-positivity in combinatorics and geometry.” arXiv preprint arXiv:1711.05983, 2017.
    [10] Katalin Vesztergombi. Permutations with restriction of middle strength. Studia Sci. Math. Hungar., 9:181–185 (1975), 1974.

    下載圖示
    QR CODE